
Topic 3: Differential Equations

1. Introduction. Definitions and classifications of ODEs

Most often decision agents take optimal actions sequentially and economic variables evolve
along time. Thus it is important to understand the tools of analysis and modeling of dy-
namical systems. We are looking at functions x : R −→ R or vector functions x : R −→ Rn

described by equations of the form

d

dt
x(t) = f(t, x(t)),

possibly with an initial condition x(t0) = x0.

Objectives:

(1) To find x(t) in closed form or, if this is not possible,
(2) to study qualitative properties of x(t) (e.g. stability).
(3) To apply the above to economic modeling.

Notation:

• x is the independent or unknown variable and t the dependent variable; most often
the variable t is omitted;

• d

dt
x(t) ≡ dx

dt
, x′(t), x′, ẋ(t), ẋ, x(1)(t), x(1).

• Higher order derivatives
dk

dtk
x(t) ≡ x(k)(t). Special case k = 2, x′′, ẍ, x(2).

• Other variables are possible, e.g.
d

dx
y(x), y′(x).

Definition 1.1. A one dimensional ordinary differential equation (ODE) of order k is a
relation of the form

(1.1) x(k)(t) = f(t, x(t), x(1)(t), . . . , x(k−1)(t)).

Note that k is the highest derivative appearing in the equation.

Definition 1.2. A first order system of ordinary differential equations is a relation of the
form

(1.2) ẋ(t) = f(t,x(t)),

where x = (x1, . . . , xn)T , f = (f1, . . . , fn)T , xi : R −→ R, fi : Rn+1 −→ R, i = 1, . . . , n.

It is always possible to transform a kth order ODE into a first order system. Let us see
how. Suppose we have the kth order ODE

x(k)(t) = f(t, x(t), x(1)(t), . . . , x(k−1)(t))
1
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and consider new functions defined by setting x1 = x, x2 = x′, . . . , xk = xk−1. Then the
ODE appears as the following first order system of differential equations:

ẋ1 = x2,

ẋ2 = x3,
...

ẋk = f(t, x1, x2, . . . , xk).

Note that in this case f(t,x) = (x2, x3, . . . , xk, f(t,x)). As an example, consider the second
order ODE

ẍ = ẋ2 − 2x− cos t.

Let the new variable y = ẋ, Then the first order system equivalent to the original scalar
equation is

ẋ = y,

ẏ = y2 − 2x− cos t.

Definition 1.3. A solution of the first order system (1.2) on an interval I ⊆ R is a differ-
entiable function x : I −→ Rn such that x(t) ∈ D for all t ∈ I and ẋ(t) = f(t,x(t)) for all
t ∈ I.

Definition 1.4. An initial value problem or Cauchy problem for a first order system consists
of (1.2) together with a condition x(t0) = x0, where (t0,x0) ∈ D.

Definition 1.5. An initial value problem or Cauchy problem for a kth order ODE consists
of (1.1) together with the conditions

x(t0) = x0, x′(t0) = x1, . . . , x
(k−1)(t0) = xk−1,

where (t0, x0, x1, . . . , xk) ∈ D.

Thus,

ẋ = t sinx, x(0) = π

is a Cauchy problem, as well as

ẍ = eẋ − tx, x(1) = 2, ẋ(1) = −1.

Under suitable conditions, a Cauchy admits a unique solution.

Definition 1.6.

• The ODE (1.2) is linear if for fixed t, the map x −→ f(t,x) is linear.
• The ODE (1.2) is autonomous if f is independent of t.

Throughout these lecture notes it is assumed the continuity of the functions f and f .
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2. Elementary integration methods of first order ODEs

Let us look at some particular cases where the scalar first order ODE

(2.1) ẋ(t) = f(t, x(t)), t ∈ I ⊆ R, Ian interval finite or infinite,

can be explicitly solved.

The simplest case is when f is independent of the solution itself, x. That is

ẋ(t) = f(t), t ∈ I = [a, b] ⊆ R.
Finding x leads to the integration problem.

The Fundamental Theorem of Calculus establishes that

x(t) = C +

∫ t

a

f(t) dt,

with C a constant. If we want the solution passing through (a, x0), then C = x0. Note that
even in this simple case the solution found can have little practical value, and the study of
the qualitative behavior can be more illuminating. Resorting to numerical approximations
of the solution is another interesting possibility.

2.1. Separable equations.

Definition 2.1. A first order ODE is separable if f(t, x) = g(t)h(x), that is

ẋ(t) = g(t)h(x(t)).

Method of solution: Denoting H(x) and G(t) some antiderivatives of 1/h(x) and g(t) respec-
tively, observe the following steps (notice that H ′ = 1/h and G′ = g):

(i) Separation of variables:
ẋ

h(x)
= g(t),

(ii) Chain Rule:
d

dt
H(x(t)) =

d

dt
G(t),

(iii) Integration with respect to t: H(x(t)) = G(t) + C.

The expression obtained defines x implicitly. It is possible to prove that if h(x0) 6= 0,
then the solution defined by the implicit expression satisfying x(t0) = x0 is unique in a
neighborhood of x0. The constant C can be determined if an initial condition is fixed.

Example 2.2. To find the solution of the separable ODE ẋ = tx2, we start with

ẋ

x2
= t⇒ dx

x2
= t dt⇒

∫
dx

x2
=

∫
t dt.

Integrating, we find

−x−1 =
t2

2
+ C.

Solving for x we get

x(t) = − 1
t2

2
+ C

.
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Suppose that we want the solution passing through (0, 1); then

1 = x(0) = − 1

C
⇒ C = −1,

thus

x(t) = − 1
t2

2
− 1

.

The solution exists only in the interval (−
√

2,
√

2).

2.2. Exact equations. Integrating factors. Suppose we have a first order ODE of the
form in the form

(2.2) ẋ(t) = −P (t, x(t))

Q(t, x(t))
,

for some functions P , Q, such that Q(t, x) 6= 0 for every point (t, x) in some set D.

This is equivalent to Q(t, x)ẋ = −P (t, x), and interpreting
dx

dt
as a quotient (this has no

sense, of course, but it is useful and it works in this case) we can rewrite the ODE as

(2.3) P (t, x) dt+Q(t, x) dx = 0.

Consider now a function V of variables (t, x), of class C2 (the second order partial deriva-
tives exist and are continuous). The differential of V is

dV =
∂V

∂t
dt+

∂V

∂x
dx.

Suppose that it is possible to find a function V such that

∂V

∂t
= P.(2.4)

∂V

∂x
= Q.(2.5)

Then, the differential of V

dV =
∂V

∂t
dt+

∂V

∂x
dx = P dt+Qdx = 0

along the solutions of the ODE. This means that V is constant. Thus we get that the
solutions of the ODE are given by the implicit equation:

V (t, x(t)) = C.

This important observation motivates the following definition.

Definition 2.3. The first order ODE (2.2) (or (2.3)) is exact in a neighborhood D of the
point (t0, x0) if Q(t0, x0) 6= 0 and there exists a function V of class C2 on D satisfying (2.4)
and (2.5).
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When is there a function V satisfying (2.4) and (2.5)? It both conditions were true, then

∂2V

∂x∂t
=
∂P

∂x
.(2.6)

∂2V

∂t∂x
=
∂Q

∂t
.(2.7)

Since the order of derivation does not matter for a C2 function,

∂2V

∂x∂t
=

∂2V

∂t∂x
,

we get the necessary (and sufficient) condition

∂P

∂x
(t, x) =

∂Q

∂t
(t, x).

Theorem 2.4. Assume that P and Q are C1 in a neighborhood D of the point (t0, x0). The
necessary and sufficient condition for (2.2) (or (2.3)) to be exact in D is

(2.8)
∂P

∂x
=
∂Q

∂t

in D.

Example 2.5. The equation (2t− x2) dt+ 2tx dx = 0 is not exact, since

∂P

∂x
= −2x 6= 2x =

∂Q

∂t
.

However, the equation

(2t− x2) dt− 2tx dx = 0

is exact. Let us solve. Once we determine function V , the problem is finished. To find V ,
we begin with (2.4)

∂V

∂t
= P (t, x) = 2t− x2.

Integrating with respect to t we get

(2.9) V (t, x) =

∫
(2t− x2) dt = t2 − tx2 + ψ(x),

where ψ is a function of x that we must determine using the other condition (2.5), that is,

∂V

∂x
= Q(t, x) = −2tx.

Deriving in (2.9) with respect to x we get

∂V

∂x
= −2tx+ ψ′(x)

and equating both expressions above

ψ′(x) = 0.
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We choose ψ = 0. Hence, V (t, x) = t2 − tx2 and since the solution satisfies V (t, x(t)) = C,
we have

t2 − tx2(t) = C ⇒ x(t) = ±
√
t− C

t
(t 6= 0).

If the equation
P (t, x) dt+Q(t, x) dx = 0

is not already exact, we could multiply the equation by a non null function µ(t, x) such that
the equation

µ(t, x)P (t, x) dt+ µ(t, x)Q(t, x) dx = 0

be exact. Then µ is called an integrating factor. Unfortunately, to find integrating factors is
difficult, except in the two following cases:

(1) The quotient

a(t) =
∂P
∂x
− ∂Q

∂t

Q
is independent of x. Then

µ(t) = e
∫
a(t) dt

is an integrating factor.
(2) The quotient

b(x) =
∂Q
∂t
− ∂P

∂x

P
is independent of t. Then

µ(x) = e
∫
b(x) dx

is an integrating factor.

Example 2.6. The equation

(2.10) (t2 + x2) dt− 2tx dx = 0

is not exact, since ∂P/∂x = 2x 6= −2x = ∂Q/∂t. To find an integrating factor we consider
the two quotients:

∂Q

∂t
−

∂P
∂x

P
=
−4x

t2 + x2
,

∂P
∂x
− ∂Q

∂t

Q
=

4x

−2tx
= −2

t
, independent of x.

Hence
µ(t) = e−

∫
2/t = e−2 ln t = eln t

−2

= t−2

is an integrating factor. We multiply equation (2.10) by µ, transforming the ODE in an
equivalent one

t2 + x2

t2
dt+

(
−2x

t

)
dx = 0,
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which is exact, since
∂P

∂x
=

2x

t2
=
∂Q

∂t
.

Now we compute V using (2.4)

∂V

∂t
= P =

t2 + x2

t2
= 1 + x2t−2,

hence

V (t, x) =

∫
(1 + x2t−2) dt = t− x2t−1 + ψ(x).

Deriving with respect to x we have

∂V

∂x
= −2xt−1 + ψ′(x).

On the other hand, by (2.5)
∂V

∂x
= Q = −2

x

t
.

We obtain that ψ = 0, and the solution is given by

t− x(t)2t−1 = C.

2.3. Linear equations.

Definition 2.7. The first order ODE

ẋ(t) + a(t)x(t) = b(t)

is called linear. Here, a(t) and b(t) are given functions.

To solve the linear equation we proceed as follows. Let µ(t) = e
∫
a(t) dt and multiply the

equation by µ(t) so that
(ẋ+ a(t)x)µ(t) = b(t)µ(t).

Notice that µ̇(t) = a(t)µ(t) thus,

(ẋ(t) + a(t)x(t))µ(t) = ẋ(t)µ(t) + x(t)a(t)µ(t) = ẋ(t)µ(t) + x(t)µ̇(t) =
d

dt
(x(t)µ(t)).

Hence integrating∫
d

dt
(x(t)µ(t)) dt =

∫
b(t)µ(t) dt ⇒ x(t)µ(t) =

∫
b(t)µ(t) dt.

Solving for x(t) we find

(2.11) x(t) =
1

µ(t)

∫
b(t)µ(t) dt.

Recall that the integral symbol means a primitive plus an arbitrary constant. Since for any
constant t0 ∫ t

t0

b(s)µ(s) ds
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is a primitive of b(t)µ(t), we can write

x(t) =
1

µ(t)

(∫ t

t0

b(s)µ(s) ds+ C

)
,

from which we can identify the constant C if we look for the solution satisfying x(t0) = x0:

x0 =
1

µ(t0)
C ⇒ C = x0µ(t0),

(2.12) x(t) =
1

µ(t)

(∫ t

t0

b(s)µ(s) ds+ x0µ(t0)

)
.

Hence we have proved the following result.

Theorem 2.8. The unique solution of ẋ(t) +a(t)x(t) = b(t) passing through (t0, x0) is given
by (2.12).

Of course, it is not needed to remember the formula. We only need to understand the
method used to find it.

Example 2.9. Solve the Cauchy problem t2ẋ+ tx = 1, t > 0, x(1) = 2.

Solution: First divide by the coefficient of ẋ to have the standard form of the ODE

ẋ+
x

t
=

1

t2
.

We identify here a(t) = −1/t and b(t) = 1/t2. Since
∫
a(t) dt = ln t, we have µ(t) = t. Using

(2.11) we get

x(t) =
1

t

∫
1

t2
t dt =

1

t

∫
1

t
dt =

1

t
(ln t+ C).

This is the general solution. The individual solution passing through (1, 2) gives 2 = C,
hence x(t) = 1

t
(ln t+ 2).

Example 2.10. Solve the linear equation ẋ + ax = b with initial value x(t0) = x0, where
a 6= 0 and b are constants.

Solution: Here µ(t) = e
∫
a dt = eat and from (2.11)

(2.13) x(t) = e−at
∫
beat dt = e−at

(
b

a
eat + C

)
=

(
b

a
+ Ce−at

)
.

Imposing x(t0) = x0 it is possible to determine the constant C as follows

x0 =

(
b

a
+ Ce−at0

)
⇒ C =

(
x0 −

b

a

)
eat0

and plugging this value of C into the (2.13)

x(t) =
b

a
+

(
x0 −

b

a

)
e−a(t−t0).
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For instance, the solution of the equation ẋ+ 2x = 10 with x(0) = −1 is

x(t) = 5− 6e−2t.

2.4. Phase diagrams for first order scalar equations. The phase diagram of the au-
tonomous equation ẋ = f(x) consists in a drawing of the graph of function f in the plane
(x, ẋ). The zeroes of f correspond to steady states, stationary points or equilibrium points
of the equation, that is, constant solutions of the autonomous ODE.

Definition 2.11 (Stationary points). A stationary point of the autonomous ODE ẋ = f(x)
is any constant x0 satisfying f(x0) = 0.

Stationary points are important in the study of the behavior of the dynamics. Analyzing
the graph of f , one obtains information on whether the solutions are increasing or decreasing.
If f > 0 in an interval, then x(t) increases in this interval, which can be indicated by an
arrow of motion pointing to the right. Similarly, if f < 0, then x(t) decreases in this interval
and the arrow that describes the motion of x points to the left.

For scalar ODEs, the sign of the f near a stationary point (if any) gives important infor-
mation on the behavior of the solution near that point. For systems the situation is more
complicated, and will be explored in next sections.

For now, we center on the scalar case, f : D −→ R.
As remarked above, a stationary point is a solution of the ODE, hence if we know that

some uniqueness of solutions criterium holds, then no solution can cross through x0. In the
scalar case we have the following, where we are assuming that the stationary point x0 is
isolated:

• f > 0 on (a, x0) and f > 0 on (x0, b). The solution x converges to x0 from initial
conditions a < x0 < x0 and diverges of x0 from b > x0 > x0 (unstable solution);

• f > 0 on (a, x0) and f < 0 on (x0, b). The solution x converges to x0 from every
initial condition a < x0 < b (stable solution);

• f < 0 on (a, x0) and f > 0 on (x0, b). The solution x diverges of x0 from every initial
condition a < x0 < b (unstable solution);

• f < 0 on (a, x0) and f < 0 on (x0, b). The solution x diverges of x0 from initial
conditions a < x0 < x0 and converges to x0 from b > x0 > x0 (unstable solution).

We can resume the above in the following: a stationary state x0 is locally asymptotically
stable if and only if there exists δ > 0 such that for all x ∈ (x0 − δ, x0 + δ), x 6= x0 we have

(x− x0)f(x) < 0

and it is unstable in the other case:

(x− x0)f(x) < 0.
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Example 2.12. The ODE ẋ = f(x) = x3 − 2x2 − 5x + 6 has three equilibrium points
f(x) = 0: x01 = −2, x02 = 1 and x30 = 3. The function in negative in (−∞,−2), positive in
(−2, 1), negative in (1, 3) and positive in (3,∞). Hence,

x01 = −2 is unstable;

x02 = 1 is locally asymptotically stable;

x30 = 3 is unstable.

3. Applications

Example 3.1 (Walras adjustment mechanism). Economic models often analyze rates of
change of economic variables. In equilibrium analysis the rate of change of the market price
for commodity x depends on excess demand E (demand quantity minus the supply quantity,
E = D − S)

(3.1) ṗ(t) = E(p(t)),

where p is the price. This is a first order differential equation, called the Walrasian price
adjustment mechanism. Note that E(p) > 0 implies that p rises, and E(p) < 0 that p falls.
Suppose that D(p) = b− ap and S(p) = β + αp, with a, b, α, β > 0, with b > β; then

ṗ = b− β − (a+ α)p.

This is a linear ODE with constant coefficients. The solution is

p(t) = p(0)e−(a+α)t +
b− β
a+ α

(1− e−(a+α)t)

=

(
p(0)− b− β

a+ α

)
e−(a+α)t +

b− β
α + a

.

The solution tends to the equilibrium solution p0 = b−β
α+a

> 0.

Example 3.2 (An asset pricing model). Let p(t) denote the price of an equity that pays
dividend D(t) dt, and let r denote the yield on a risk free bond. Consider an interval of time
[t, τ ]. The total cash flow of the asset in interval [t, τ ] is

∫ τ
t
D(s) ds, and the capital gain in p

is p(τ)− p(t). By a non–arbitrage condition, the cash flow plus capital gains must be equal
to earnings of keeping the asset in the bank account, hence∫ τ

t

D(s) ds+ p(τ)− p(t) = p(t)er(τ−t) − p(t).
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Dividing by (τ − t), taking limits as τ → t, assuming D is (right) continuous and applying
L’Hospital rule, we have

lim
τ→t

∫ τ
t
D(s) ds

τ − t
=

0

0
= lim

τ→t

D(τ)

1
= D(t), (L’Hospital rule).

lim
τ→t

p(τ)− p(t)
τ − t

= ṗ(t), (Definition of derivative).

lim
τ→t

er(τ−t) − 1

τ − t
=

0

0
= lim

τ→t

rer(τ−t)

1
= r, (L’Hospital rule).

Then we get the linear ODE

(3.2) D(t) + ṗ(t) = rp(t) ⇒ ṗ(t)− rp(t) = −D(t),

which is the fundamental pricing equation.
Given dividends D(t), the price of the asset is driven by ODE (3.2). It is a linear equation

that can be solved using (2.12) with µ(t) = e−
∫
r dt = e−rt to give

p(t) = ert
(∫ t

0

−D(s)e−rs ds+ p(0)

)
.

Here, p(0) is the current price of the asset, and solving for it we find

p(0) = e−rtp(t) +

∫ t

0

D(s)e−rs ds.

Notice that we find that the price of the equity at time 0 equals the present value of future
dividends only if

lim
t→∞

e−rtp(t) = 0.

Supposing that this holds (the non–bubble condition), then price of the asset today is

p(0) =

∫ ∞
0

D(s)e−rs ds,

that is, the fundamental value of the equity equals the discounted sum of all future dividends
from t = 0 onwards.

Some examples: Which is the price of an asset that pays the constant amount of 1 dt euros
perpetually? It is

p(0) =

∫ ∞
0

e−rs ds =
1

r
lim
t→∞

(1− e−rt) =
1

r
.

Which is the price of an asset that pays 1 dt euro up to t < 10 and then 2 dt euros forever
if the risk–free rate is r = 0.025? It is

p(0) =

∫ 10

0

e−0.025s ds+ 2

∫ ∞
10

e−0.025s ds

= 40(1− e−0.25) + 80 lim
t→∞

(e−0.25 − e−0.025t)

= 40(1− e−0.25) + 80e−0.25 = 40(1 + e−0.25) = 71.152 euros.
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Example 3.3 (Malthus’ model). The British economist Thomas Malthus (1766–1834) ob-
served that many biological populations increase at a rate proportional to the population,
P , that is,

(3.3) Ṗ (t) = rP (t),

where the constant of proportionality r is called the rate of growth (r > 0) or decline (r < 0).
The mathematical model with r > 0 predicts that the population will grow exponentially
for all time. Malthus was led to this formulation by inspecting the census records of the
United States, which showed a doubling of population every 50 years. Since the means of
subsistence were found to increase in arithmetic progression, he argued that the earth could
not feed the human population. This point of view had a major impact on social philosophy
in the 19th Century. It is immediate to see that the solution is

P (t) = P (0)ert,

which is unique given the initial condition P (0). The solution shows exponential growth
r > 0.

As an example, consider the population of the United States in 1800, that was recorded as
5.3 million. Taking r = 0.03 (which is a good approximation of the true rate of growth for
years around 1800) we get P (t) = 5.3e0.03t million for the population in year 1800+t. For 1850
it predicts P (50) = 23.75 million, whereas the actual population was 23.19. However, for
1900 it gives P (100) = 106.45, but the actual population was 76.21. The model approximate
the data for years near the initial one, but the accuracy of the approximation diminishes
over time because the increase in population is not proportional to the population.

Example 3.4 (Verhulst’ model). The Belgian mathematician P.F. Verhulst (1804–1849)
observed that limitations on space, food supply or other resources will reduce the growth
rate, precluding exponential growth. He modified Eq. (3.3) replacing the constant r by a
function r(P )

Ṗ (t) = r(P (t))P (t).

Verhulst supposed that r(P ) = r −mP , where r and m are constants. Then, the ODE is

(3.4) Ṗ (t) = rP (t)−mP 2(t),

that is also known as the logistic equation. It can be rewritten as

Ṗ (t) = r

(
1− P (t)

K

)
P (t),

with K = r/m. The constant r is called the intrinsic growth rate, and K is the saturation
level or environmental carrying capacity.

The logistic equation is separable and can be integrated explicitly from the identity∫
dP

P (1− P
K

)
=

∫
r dt.

Noticing that
1

P (1− P
K

)
=
A

P
+

B

1− P
K
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gives A = 1 and B = 1/K we have

(3.5) ln

∣∣∣∣ P

K − P

∣∣∣∣ = rt+ C.

Imposing that P (0) = P0 is the initial population, the constant C is given by

C = ln

∣∣∣∣ P0

K − P0

∣∣∣∣.
Plugging this value of C into (3.5) and taking the exponential on both sides we get∣∣∣∣ P

K − P

∣∣∣∣ = ert
∣∣∣∣ P0

K − P0

∣∣∣∣ .
It is possible to show that if P0 < K, then P (t) < K and that if P0 > K, then P (t) > K for
all t, hence eliminating the absolute value on both sides and solving for P (t) we get

P (t) =
KP0

P (0) + (K − P0)e−rt
.

Notice that limt→∞ P (t) = K if r > 0.
Turning back to the example above about United States population, suppose that K = 300

(this is close to the actual population of year 2009, and thus a very modest level for the
carrying capacity) and r = 0.03 (a good estimation of the intrinsic growth rate around 1800,
but far away from the actual intrinsic growth rate in year 2009). Recall that the initial data
from year 1800 was 5.3. Using this we find P (50) = 22.38 and P (100) = 79.61, whereas the
actual population in 1900 was 76.21.

In Figure 1 it is represented P/K for a population model driven by the logistic equation
with r = 0.71 (for illustrative purposes), for several initial conditions. The thicker line is the
solution with P (0) = 0.25K.

Example 3.5 (Population with a threshold). Suppose now that when the population of
a species falls below a certain level, the species cannot sustain itself, but otherwise, the
population follows logistic growth. To describe this situation, we can consider the differential
equation (we omit t)

(3.6) Ṗ = −r
(

1− P

A

)(
1− P

B

)
P,

where 0 < A < B. The constant A is called the threshold of the population (we will see why
afterwards) and B is now the carrying capacity. There are three stationary points, P = 0,
P = A and P = B, corresponding to the equilibrium solutions P1(t) = 0, P2(t) = A and
P3(t) = B, respectively. From Figure 2, it is clear that P ′ > 0 for A < P < B. The reverse
is true for y < A or y > B. Consequently, the equilibrium solution P1(t) and P3(t) are
asymptotically stable, and the solution P2(t) is unstable. Notice that the population goes to
extinction when P (0) < A, so we call A the threshold of the population.
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Figure 1. P/K versus t for the logistic equation with r = 0.71.

In Figure 3 we graph several solutions to Ṗ = −0.25P (1−P )(1−P/3) using different values
for the initial population P0.When 0 < P (0) < 1, limt→∞ P (t) = 0, and if 1 < P (0) < 3 or
P (0) > 3, then limt→∞ P (t) = 3.

O
>> >><< <<

f(P )

A B P

Figure 2. Phase space in the population model with threshold.

Example 3.6 (The Solow model). The dynamic economic model of Solow (1956) marked
the beginning of modern growth theory. It is based on the following assumptions.

(1) Labour, L, growths at a constant rate n, i.e. L̇/L = n;
(2) All saving S = sY are invested in capital formation, I = K̇ + δK, where Y denotes

income, K capital and δ, s ∈ (0, 1] (δ is capital depreciation):

sY = K̇ + δK.



15

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x

y

A 

B 

Figure 3. Several solutions in the population model with threshold.

(3) The production function F (L,K) depends on labor L and capital K, and shows
constant returns, F (λL, λK) = λF (K,L). A typical example is the Coob–Douglas
production function F (K,L) = ALαK1−α, α ∈ [0, 1]. Observe that taking λ = L

Y = F (K,L) = F

(
L
K

L
,L

)
= LF

(
K

L
, 1

)
= Lf(k),

where k = K
L

and f(k) = F
(
K
L
, 1
)
.

The fundamental dynamic equation of this growth model is obtained as follows:

k̇ =
d

dt

K

L
=
K̇L−KL̇

L2
=
K̇

L
− K

L

L̇

L

=
sLf(k)− δK

L
− kn = sf(k)− (δ + n)k.

Thus, we have obtained that the per–capita capital moves according to the ODE

k̇ = sf(k)− (δ + n)k.

Common assumptions are that the function f is increasing and strictly concave and that
there exists a maximal productive stock of capital, km, that is, f(k) < k for k > km and
f(k) < k for k < km.

There are two steady states k̇ = 0, k = 0 and k = ke satisfying sf(ke) = (δ + n)ke. The
steady state 0 is unstable and ke is stable. This can be seen in the figure below (λ = δ+ n).
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Figure 4. Phase diagram in the model of Solow.

4. Second order linear ODEs

Definition 4.1. A second order linear ODEs is of the form

(4.1) ẍ+ a1(t)ẋ+ a0(t)x = b(t),

where a1, a0 and b are given functions. In the case that a1 and a0 are constant, then the
ODE is called of constant coefficients (even if b is not constant). In the case b = 0, the ODE
is called homogeneous.

Definition 4.2. The general solution of (4.1) is the set of all its solutions; a particular
solution is any element of this set.

The space of solutions of the homogeneous ODE has the structure of a vector subspace.

Proposition 4.3. If x1 and x2 are solutions of the homogeneous ODE, then for any constants
C1, C2, x(t) = C1x1(t) + C2x2(t) is also a solution.

Theorem 4.4. The general solution of the complete ODE (4.1) is the sum of the general
solution of the homogeneous equation, xh, and a particular solution, xp:

x(t) = xh(t) + xp(t).

Next, we give a result that shows how to find the general solution xh for the equation with
constant coefficients

(4.2) ẍ+ a1ẋ+ a0x = 0, a1, a0 constant.

Definition 4.5. The characteristic equation of (4.2) is

r2 + a1r + a0 = 0.

Theorem 4.6. Let r1, r2 be the solutions (real or complex) of the characteristic equation.
Then, the general solution of the homogeneous equation is of one of the following forms:

(1) r1 and r2 are both real and distinct,

xh(t) = C1e
r1t + C2e

r2t.
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(2) r1 = r2 = r is real and of multiplicity two,

xh(t) = C1e
rt + C2te

rt.

(3) r1, r2 are complex conjugates, r1,2 = a± ib,
xh(t) = eat(C1 cos bt+ C2 sin bt).

Example 4.7. Find the general solution of the following homogeneous equations.

(1) ẍ− x = 0; since r2 − 1 = 0 is the characteristic equation,

xh(t) = C1e
t + C2e

−t.

(2) ẍ− 4ẋ+ 4x = 0; since r2 − 4r − 4 = (r − 2)2 = 0 is the characteristic equation,

xh(t) = C1e
2t + C2te

2t.

(3) ẍ + x = 0; since r2 + 1 = 0 is the characteristic equation, that has roots ±i (a = 0,
b = 1),

xh(t) = C1 cos t+ C2 sin t.

Now, to obtain the general solution of the complete equation, we need to give methods
to obtain particular solutions. This is possible only in some limited cases that are described
next. Hence, consider the equation with constant coefficients

ẍ+ a1ẍ+ a0x = b(t),

where b(t) is:

-: A polynomial P (t) = bnt
n + · · · b1t+ b0 of degree n = 0, 1, . . .;

-: An exponential beat;
-: Trigonometric b1 cos at+ b2 sin at;
-: Product and sums of the above (e.g. (t2 − t+ 1)e−t + 2 sin t).

Then, a particular solution of the complete equation is of the following corresponding form

-: xp(t) = ts(Bnt
n + · · ·B1t+B0), where s = 2 if 0 is a double root of the characteristic

equation, s = 1 if it is simple, and s = 0 if it is not a root;
-: xp(t) = Btseat, where s = 2 if a is a double root of the characteristic equation, s = 1

if it is simple, and s = 0 if it is not a root;
-: xp(t) = ts(B1 cos at + B2 sin at), where s = 1 if ai is a (complex) root of the char-

acteristic equation and s = 0 if it is not (note that ai cannot be a double root of a
polynomial of order two and real coefficients);

-: Product and sums of the above (e.g. ts(B2t
2 +B1t+B0)e

−t+ ts
′
(D1 sin t+D2 cos t)),

where s and s′ are determined by the same rules as above.

For instance, the equation ẍ − 4x = e2t(t + 1) has characteristic roots 2 and −2. The
particular solution is thus of the form xp(t) = te2t(B1t + B2). However, for the equation
with the same independent term ẍ− 4ẋ+ 4x = e2t(t+ 1), the particular solution of the form
xp(t) = t2e2t(B1t+B2), since 2 is a double root.
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The procedure to find xp is to substitute the guessed form for xp (depending of the structure
of b(t)) on the equation, and then to match coefficients to obtain a linear systems for the
unknown constants B0, . . . Bn.

Example 4.8. Find particular solutions of the following equations.

(1) ẍ− x = 2et/2 + e−t/2. We guess

xp(t) = B1e
t/2 +B2e

−t/2

and put into the equation (after obtaining ẋp and ẍp) to have

B1

4
et/2 +

B2

4
e−t/2 −B1e

t/2 −B2e
−t/2 = 2et/2 + e−t/2.

Then, B1 = −8/3 and B2 = −4/3.
(2) ẍ− 4ẋ+ 4x = t2 − t. We guess

xp(t) = B2t
2 +B1t+B0.

We find ẋp = 2B2t+B1 and ẍp = 2B2 and substituting into the equation we obtain

2B2 − 8B2t− 4B1 + 4B2t
2 + 4B1t+ 4B0 = t2 − t.

Hence, it must be
4B2 = 1

−8B2 + 4B1 = −1
2B2 − 4B1 + 4B0 = 0

 .

Solving, we get B0 = 1/8, B1 = 1/4 and B2 = 1/4.
(3) ẍ+ x = te−t − 2. We guess

xp(t) = (B1t+B0)e
−t + C.

We find ẋp = B1e
−t − (B1t+ B0)e

−t and ẍp = −B1e
−t + (B1t+ B0)e

−t − B1e
−t and

substituting into the equation we get

−2B1e
−t +B0e

−t +B1te
−t +B1te

−t +B0e
−t + C = te−t − 2.

Hence,
C = −2

2B1 = 1
−2B1 + 2B0 = 0


implies C = −2, B1 = 1/2 and B0 = 1/2.

(4) ẍ + ẋ = te−t − 2. The characteristic equation r2 + r = 0 has solutions r = 0 and
r = −1. The general solution of the homogeneous ODE is C1 + C2e

−t. Guess that a
particular solution is of the form

xp(t) = ts(B1t+B0)e
−t + ts

′
C,

with s = 1 and s′ = 1, since 0 is root of multiplicity 1 to the characteristic equation,
and in the independent term, te−t − 2, both t and −2 are polynomials. Thus,

xp(t) = (B1t
2 +B0t)e

−t + Ct.
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We have
ẋp = (2B1t+B0)e

−t − (B1t
2 +B0t)e

−t + C

and

ẍp = 2B1e
−t − (2B1t+B0)e

−t − (2B1t+B0)e
−t + (B1t

2 +B0t)e
−t.

Grouping terms

ẍp + ẋp = (−2B1t+ (2B1 −B0))e
−t + C

and equating to te−t − 2, we find the values

C = −2
B1 = −1

2
B0 = 1


Definition 4.9. The Cauchy problem of the equation (4.1) consists in finding a solution
satisfying the initial conditions

x(t0) = x0, ẋ(t0) = x1.

Example 4.10. Solve the Cauchy problem

ẍ− 4ẋ+ 4x = t2 − t, x(0) = 1, ẋ(0) = 0.

As we know from examples above, the general solution of the complete equation is

x(t) = C1e
2t + C2te

2t +
1

4
t2 +

1

4
t+

1

8
.

We need to compute the derivative to use the condition imposed in ẋ(0).

ẋ(t) = 2e2t(C1 + C2t) + C2e
2t +

t

2
+

1

4
.

Then
x(0) = 1 = C1 + 1

8
ẋ(0) = 0 = 2C1 + C2 + 1

4

}
.

This linear system can be solved to obtain C1 = 7/8 and C2 = −2. The solution of the
Cauchy problem is thus

x(t) =

(
7

8
− 2t

)
e2t +

1

4
t2 +

1

4
t+

1

8
.

5. Systems of first order ODEs

5.1. Linear systems. Consider the n–dimensional linear system of constant coefficients

Ẋ(t) = AX(t) +B,

where

X(t) =

 x1(t)
...

xn(t)

 , A =

 a11 . . . a1n
...

. . .
...

an1 . . . ann

 , B(t) =

 b1
...
bn

 .
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The unknowns are the functions x1(t), . . . , xn(t). We are interested only in studying the
stability properties of the equilibrium points.

Definition 5.1. A constant vector X0 is an equilibrium point iff AX0 +B = 0.

To assure that only one equilibrium exists, we will impose in the following the condition

|A| 6= 0.

Then the equilibrium is given by

X0 = −A−1B.
Most often, it is better finding X0 by solving directly the algebraic system than using the
inverse matrix.

Remark 5.2. It can be proved that the solution X(t) of Ẋ(t) = AX(t) + B is stable
(asymptotically stable) if and only if the null solution Xh(t) ≡ 0 of the homogeneous system
Ẋ(t) = AX(t) is stable (asymptotically stable). In other words, all solutions of the system
Ẋ(t) = AX(t) +B the same stability properties. Therefore, for studying stability it suffcies
to study the homogeneous system,

We center on the two dimensional case n = 2, that is, in systems with two variables of the
form

(5.1)

{
ẋ = a11x+ a12y + b1,

ẏ = a21x+ a22y + b2.

where ∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ 6= 0.

Let λ1, λ2 be the roots (real or complex) of the characteristic polynomial of A, that is, of
the equation

pA(λ) = |A− λI2| = 0.

We have the following cases (the general solution is that of the homogeneous system):

(1) λ1 6= λ2 are real (A is diagonalizable). Let v1 ∈ S(λ1) and v2 ∈ S(λ2) be eigenvectors.
Then, the general solution is

X(t) = C1e
λ1tv1 + C2e

λ2tv2.

(2) λ1 = λ2 = λ.
(a) A is diagonalizable. Let v1,v2 ∈ S(λ) two independent eigenvectors. Then, the

general solution is

X(t) = eλt(C1v1 + C2v2).
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(b) A is not diagonalizable. Let v ∈ S(λ) the only independent eigenvector corre-
sponding to λ, and let w another vector satisfying

(A− λI2)w = v.

Then, the general solution is

X(t) = eλt(C1v + C2w + C2tv).

(3) λ1 = α + iβ, λ2 = α − iβ, with β 6= 0. Then, there are non trivial vectors v and w
such that the general solution is1

X(t) = eαtC1(w cos βt− v sin βt) + eαtC2(w sin βt+ v cos βt).

Using this we can deduce the asymptotic behavior of the solutions.

(1) λ1 6= λ2 are real.
(a) λ1, λ2 < 0. The equilibrium is globally asymptotically stable. It is called an

stable node.
(b) λ1 < 0 < λ2. The equilibrium is unstable, but solutions for which C2 = 0 con-

verges to X0. We say that X0 is a saddle point. Initial conditions X0 = (x0, y0)
from which the corresponding solution converges form the stable manifold, and
it is given by the eigenspace S(λ1).

(c) λ1, λ2 > 0. The equilibrium is unstable. It is called an unstable node.
(2) λ1 = λ2 = λ. The equilibrium is g.a.s. iff λ < 0. In this case it is called an improper

stable node. In the case λ > 0 the system is unstable. In the case λ = 0, the system
is in fact the trivial system ẋ = 0, ẏ = 0, which is not interesting.

(3) λ1 = α+iβ, λ2 = α−iβ, with β 6= 0. Notice that the two functions w cos βt−v sin βt
and w sin βt+ v cos βt are periodic functions with period 2π/β
(a) The real part α = 0. The solution oscillates around X0 with constant amplitude.

It is said that X0 is a center. It is stable, but not g.a.s.
(b) The real part α < 0. The solution oscillates with a decreasing amplitude towards

X0, hence it is g.a.s. and it is called an spiral point.

Figure 5 illustrate some of the most important cases. The draws are the phase space of
some particular linear systems that show different stability patterns. Continuous lines are
solutions (x(t), y(t)) of the system, but represented in the xy plane, once the time variable t
is eliminated t. Grey small arrows indicate the direction field as determined by the system
and point into the direction of displacement of the solutions. The vectors are tangent to the
solutions curves in the xy plane.

1The vectors can be obtained as solutions to the (complex) linear system (A− (α + iβ)I2)(v + iw) = 0.
We are not interested in how to find these vectors, but it can be proved that they satisfy(

(2A− αI2)2 + β2I2
)
v = 0, w =

1

β
(2A− αI2)v.
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(a) Stable node (b) Saddle point

(c) Center (d) Stable spiral

Figure 5. Phase diagram

In the following theorem, note that the assumption |A| 6= 0 implies that 0 is not an
eigenvalue of A. On the other hand, since the dimension of A is 2, if A has complex
eigenvalues, then they have the same real part, as they are conjugate numbers.

Theorem 5.3. The equilibrium point of the system (5.1) is

(1) Asymptotically stable, if the eigenvalues of A have negative real part;
(2) Stable, but not asymptotically stable, if the eigenvalues of A have null real part;
(3) Unstable. if some of the eigenvalues has positive real part.

Example 5.4. Determine the behavior of solutions near the origin for the system

ẋ = 3x− 2y,

ẏ = 2x− 2y.

Find the general solution.
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Solution: The coefficient matrix

A =

(
3 −2
2 −2

)
has characteristic equation ∣∣∣∣ 3− λ −2

2 −2− λ

∣∣∣∣ = λ2 − λ− 2,

and therefore the eigenvalues are −1 and 2. Therefore the origin is an unstable saddle point.
To find the solution, we need the eigenvectors associated to the eigenvalues, and they are

found by solving the homogeneous system(
3− λ −2

2 −2− λ

)(
v1
v2

)
=

(
0
0

)
.

For λ = −1
4v1 − 2v2 = 0, 2v1 − v2 = 0.

and an eigenvector associated to λ1 = −1 is v1 = (1, 2). When λ = 2

v1 − 2v2 = 0, 2v1 − 4v2 = 0,

which gives v2 = (2, 1). The general solution to the system is(
x(t)
y(t)

)
= C1e

−t
(

1
2

)
+ C2e

2t

(
2
1

)
.

Example 5.5. Determine the behavior of solutions near the origin for the system

Ẋ(t) =

(
3 b
1 1

)
X(t).

Solution: The characteristic equation is

λ2 − 4λ+ (3− b) = 0.

The solutions are
λ1 = 2 +

√
1 + b, λ2 = 2−

√
1 + b.

Note that b < −1 implies that λ1, λ2 are both complex, with real part α = 2 > 0, and that
b ≥ −1 gives λ1 > 0 for all b, hence the origin is unstable for all b. However, λ2 < 0 for
b > 3, hence for these values of b the origin is an unstable saddle point.

Example 5.6. Determine the behavior of solutions near the origin for the system

Ẋ(t) =

(
−a −1
1 −a

)
X(t).

Solution: The characteristic equation is

λ2 + 2aλ+ a2 + 1 = 0,
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with solutions

λ1,2 =
1

2
(−2a±

√
4a2 − 4a2 − 4) = −a± i.

The real part is α = −a, thus the origin is a g.a.s. spiral for a > 0, a center for a = 0 and it
is an unstable spiral for a > 0.

5.2. Nonlinear systems. Consider the two dimensional nonlinear system

(5.2)
ẋ = P (x, y),

ẏ = Q(x, y).

We want to study the stability properties of the equilibrium points of the system. We
will use for this a technique that consists in substituting the non–linear system for another
that is linear, and that constitutes a local approximation near the equilibrium point of the
original system. Then, we will apply, if possible, Theorem 5.3.

The linearization of the non–linear system around the equilibrium point (x0, y0) is the
linear system

(5.3)

u̇ =
∂P

∂x
(x0, y0)u+

∂P

∂y
(x0, y0) v,

v̇ =
∂Q

∂x
(x0, y0)u+

∂Q

∂y
(x0, y0) v.

We call the matrix

A(x0, y0) =

(
Px(x

0, y0) Py(x
0, y0)

Qx(x
0, y0) Qy(x

0, y0)

)
the Jacobian matrix of the system (5.2).

Example 5.7. The system

ẋ = y − x,

ẏ = −y +
5x2

4 + x2

has three equilibrium points, that is, there are three solutions of the equations

0 = y − x,

0 = −y +
5x2

4 + x2
,

(0, 0), (1, 1) and (4, 4). The linearization of the system about the different equilibrium points
can be computed as follows. The partial derivatives are

Px(x, y) = −1, Py(x, y) = 1,

Qx(x, y) =
40x

(x2 + 4)2
, Qy(x, y) = −1.
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Hence, the Jacobian matrices are

A(0, 0) =

(
−1 1
0 −1

)
, A(1, 1) =

(
−1 1
8
5
−1

)
, A(4, 4) =

(
−1 1
2
5
−1

)
,

and the associated linear systems are{
u̇ = −u+ v

v̇ = u− v
,


u̇ = −u+ v

v̇ =
8

5
u− v

,


u̇ = −u+ v

v̇ =
2

5
u− v

,

respectively. Hence, the linearization depends on the equilibrium point.

Theorem 5.8. Let (x0, y0) be an isolated equilibrium point for the nonlinear system (5.2)
and let A = A(x0, y0) be the Jacobian matrix for linearization (5.3), with |A| 6= 0. Then
(x0, y0) is an equilibrium point of the same type as the origin (0, 0) for the linearization in
the following cases.

(1) The eigenvalues of A are real, either equal or distinct, and have the same sign (node).
(2) The eigenvalues of A are real and have opposite signs (saddle).
(3) The eigenvalues of A are complex, but not purely imaginary (spiral)

Therefore, the exceptional case is when the linearization has a center. The structure for
the nonlinear system near the equilibrium points mirrors of the linearization in the non–
exceptional cases.

Example 5.9. The nonlinear system

ẋ = −y − x3, ẏ = x,

has Jacobian matrix

A =

(
0 −1
1 0

)
at the origin (0, 0), which has imaginary eigenvalues ±i, and hence (0, 0) is a center for the
linearization. This is the exceptional case in the theorem, thus we cannot assure that the
nonlinear system had a center at (0, 0) based in the associated linear system. Actually, it is
possible to show that (0, 0) is an asymptotically stable spiral for the non–linear system.

Theorem 5.10. If (0, 0) is a globally asymptotically stable equilibrium point for (5.3), then
it is locally asymptotically stable for (5.2).

Example 5.11. Consider the nonlinear system

ẋ = −2x+ 3y + xy, ẏ = −x+ y − 2xy3,

which has an isolated critical point at (0, 0). The Jacobian matrix at the origin is

A =

(
−2 3
−1 1

)
and it has eigenvalues −1

2
± (
√
3
2

)i. Thus the linearization has an asymptotically stable spiral
at (0, 0), and thus the nonlinear system has an asymptotically stable spiral at (0, 0).



26

Example 5.12. The system {
ẋ = x(ρ1 − κ1x)

ẏ = y(ρ2 − κ2y)

models two populations governed by the logistic equation that does not interact to each
other. Here ρi is the growth rate and ρi/κi is the saturation level. When both species
are present, they compete for a limited amount of available food. To capture the effect of
competition, we modify the growth rate factor by −α1y and −α2x respectively, where αi is
a measure of the effect of one of the species on the other. The system modifies to{

ẋ = x(ρ1 − κ1x− α1y)

ẏ = y(ρ2 − κ2y − α2x)
.

Suppose that ρ1 = 1, ρ2 = 0.75, κ1 = κ2 = 1, α1 = 1 and α2 = 0.5. There are four
equilibrium points: (0, 0) (extinction of both species), (0, 0.75) (extinction of population x),
(1, 0) (extinction of population y), and (0.5, 0.5) (long–term survival of both species).

Let us study the stability properties of the equilibrium points. The Jacobian matrix of
the system is

A = A(x, y) =

(
−2x− y −x
−0.5y 0.75− 2y

)
.

We analyze the qualitative behavior of the system around the equilibrium points. Recall
that σ(A) denotes the set of eigenvalues of A.

• (0,0). σ(A) = {1, 0.75}, thus the origin is an unstable node of both the linear and
the nonlinear system.
• (1,0). σ(A) = {−1, 0.25} and it is a saddle point. The stable manifold is the line

trough (1, 0) in the direction v1 = (1, 0) and the unstable manifold is generated by
v2 = (4,−5). Every solution with the initial condition not in the stable manifold
depart from (1, 0).
• (0,0.75). σ(A) = {0.25,−0.75}, hence again it is a saddle point. The stable manifold

is generated by v1 = (0, 1) and the unstable manifold by v2 = (8,−3).
• (0.5,0.5). σ(A) = {−0.5 ±

√
2/4}, the eigenvalues have negative real part, thus

this is a stable node. All trajectories near (0.5, 0.5) converge asymptotically to the
equilibrium point of the linear and the nonlinear system.

It is possible to show that for every initial condition with positive population for both species,
the dynamical process converges to the coexistence equilibrium.
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Figure 6. Phase portrait, y against x.


