
Masters in Economics-UC3M Microeconomics II

Final Exam (June 2, 2017)

Exercise 1. Consider an economy that extends over two periods, today and tomorrow,

in which there is a single perishable consumption good. The state of nature tomorrow can

either be sunny (S) or cloudy (C): There are two consumers, A and B; whose preferences

over consumption today (x); tomorrow when sunny (y), and tomorrow when cloudy (z) are

represented by the utility functions uA(x; y; z) = x(y + 2z) and uB(x; y; z) = x(2y + z); and

whose endowments are (�xA; �yA; �zA) = (10; 20; 0), and (�xB; �yB; �zB) = (10; 0; 20); respectively.

(a) (25 points) Assume that there are contingent markets for all commodities. Denote

by (px; py; pz) the prices of x; y and z; respectively, and normalize px = 1: Calculate the

competitive equilibrium prices and allocation. (Hint. Given x; the preferences of both

agents are linear en y and z; that is, MRSiyz is a constant; speci�cally, MRS
A
yz = �1=2 and

MRSByz = �2: Therefore the optimal bundle involves y = 0 if
��MRSiyz�� > py=pz, and z = 0

if
��MRSiyz�� < py=pz. In the �rst case set y = 0 and solve for x and z; and in the second

case set z = 0 and solve for x and y: Then use market clearing conditions to calculate the

equilibrium prices (p�y; p
�
z).)

Solution: For i 2 fA;Bg, consumer i�s problem is

max(x;y;z)2R3+ u
i(x; y; z)

subject to: x+ pyy + pzz � �xi + py�yi + pz�zi:

Consumer A: For prices (py; pz); such that py=pz > 1=2; yA = 0, and (xA; zA) solves

max(x;y;z)2R3+ 2xz

subject to: x+ pyy + pzz � 10 + 20py:

Hence

xA(py; pz) =
10 + 20py

2
= 5 + 10py

zA(py; pz) =
10 + 20py
2pz

:

For prices (py; pz); such that py=pz < 1=2; zA = 0, and (xA; yA) solves

max(x;y;z)2R3+ xy

subject to: x+ pyy + pzz � 10 + 20py:

Hence

xA(py; pz) =
10 + 20py

2
= 5 + 10py

yA(py; pz) =
10 + 20py
2py

=
5

py
+ 10:



Consumer B: Symmetrically, for py=pz < 2; zB = 0, and

xB(py; pz) =
10 + 20pz

2
= 5 + 10pz

yA(py; pz) =
10 + 20pz
2py

;

and for py=pz > 2; yB = 0, and

xB(py; pz) =
10 + 20pz

2
= 5 + 10pz

yA(py; pz) =
10 + 20pz
2pz

=
5

pz
+ 10:

Market clearing conditions are

yA(py; pz) + yB(py; pz) = �yA + �yB(= 20 + 0)

zA(py; pz) + zB(py; pz) = �zA + �zB(= 0 + 20):

Since zA = zB = 0 for py=pz < 1=2, and yA = yB = 0 for py=pz > 2; then in a CE

py=pz 2 [1=2; 2], and therefore

yA(py; pz) + yB(py; pz) = 0 +
10 + 20pz
2py

= 20

zA(py; pz) + zB(py; pz) =
10 + 20py
2pz

+ 0 = 20:

Solving this system we get

(p�y; p
�
z) = (

1

2
;
1

2
):

The equilibrium allocation is

(x�A; y
�
A; z

�
A) = (10; 0; 20); (x

�
B; y

�
B; z

�
B) = (10; 20; 0):

Of course, this allocation is Pareto optimal by the First Welfare Theorem.
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(b) (15 points) Suppose that there are no contingent markets, but there is a credit

market and a market for a security that pays one unit of consumption tomorrow if sunny

and 0 units of consumption if cloudy. Determine the competitive equilibrium interest rate

r� and security price q�. (Hint. You need not repeat all calculations, but simple to explore

the relation between (r�; q�) and the equilibrium prices found in part (a), (p�y; p
�
z).)

Solution: Let us normalize the spot prices to be (p̂x; p̂y; p̂z) = (1; 1; 1): For (r; q); the

problem of consumer is i 2 fA;Bg

max[(x;y;xC);b;y]2R3+�R�R u
i(x; y; z)

subject to:

x+ qs � �xi + b
y � yi � (1 + r)b+ s
z � �zi � (1 + r)b:

Since consumers� utility functions are strictly increasing in all the arguments, the budget

constraints are binding at the solution. Hence, solving for b and y in the equation describing

the constraints, we may write the problem as

max(x;y;z)2R3+ u
i(x; y; z)

subject to: x+ qy + ( 1
1+r

� q)z � �xi + q�yi + ( 1
1+r

� q)�zi:

This problem is identical to that of part (a). In equilibrium (r�; q�) solves the system

q = p�y
1

1 + r
� q = p�z:

Solving the system we get

(q�; r�) =

�
1

2
; 0

�
:

And of course, the resulting allocation is that of part (a).
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Exercise 2. The revenue of a risk-neutral principal is a random variable X(e) taking values
x1 = 2 and x2 = 10 with probabilities that depends on the level of e¤ort of an agent, e 2 [0; 1],
and are given by p1(e) = 1 �

p
e=2 and p2(e) =

p
e=2; respectively. There are two types

of agents L and H with identical preferences represented by the von Neumann-Morgenstern

utility function u(w) =
p
w; and identical reservation utility u = 0; but di¤erent costs of

e¤ort given by vL(e) = e and vH(e) = 2e.

(a) (10 points) Assume that e¤ort is veri�able and the Principal observes the agent�s

type. Determine the contracts the principal will o¤er to each type of agent. Illustrate your

results providing a graph the e¤ort supply and e¤ort demand functions for each type of

agent.

Solution. For e 2 [0; 1];

E[X(e)] = 2

�
1�

p
e

2

�
+ 10

�p
e

2

�
= 2 + 4

p
e:

For � 2 fH;Lg, the principal�s problem is

max
(e;w)2[0;1]�R+

2 + 4
p
e� w

s:t:
p
w � K�e;

where KH = 2; and KL = 1: The �rst order conditions for an interior solution are described

by the system of equations

4

2
p
e
= 2K�

p
w

p
w = K�e:

The �rst equation de�nes the Principal�s demand of e¤ort, and the second equation de�nes

the Agent�s supply of e¤ort.

For � = L these functions are

w =
1

e
w = e2:

Hence the optimal contract is

(eL; wL) = (1; 1):
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For � = H these functions are

w =
1

4e
w = 4e2:

Hence the optimal contract is

(eH ; wH) = (
1

16
1
3

;
4

16
2
3

):

0 1 2
0

1

2

3

4

Effort

Wage
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(b) (15 points) Now assume that the Agent�s type is observable, but e¤ort is not veri�able.

Also assume that only two e¤orts levels are feasible, e = 1=4 and e = 1. Determine the

contracts the Principal will o¤er to each type of agent.

Solution. Since upon accepting a contract the lowest e¤ort an agent can exert is e = 1=4,

the optimal contracts for inducing agents to exert low e¤ort, e = 1=4; involve �xed wages

satisfying the participations constrains

p
w� = K�

�
1

4

�
;

that is, �wL = 1=16;and �wH = 1=4. The resulting pro�t for � 2 fH;Lg are

E

�
X(
1

4
)

�
� w� = 2 + 4

r
1

4
� �w� = 4� �w� > 0:

The incentive compatible contract for the agents of type L to exert high e¤ort ( e = 1)

solves the system
�
1
2

�
x� 1 = 1

4
x� 1

4
, Solution is: 3�

1� 1
2

�
p
w1 +

�
1

2

�
p
w2 = 1�

1� 1
2

�
p
w1 +

�
1

2

�
p
w2 � 1 =

3

4

p
w1 +

1

4

p
w2 �

1

4
:

The solution to this system involves a negative wage w1. Assuming that negative wages

cannot be paid due to limited liability, forces the Principal to set up w1 = 0; and hence the

incentive compatibility constraint implies w2 = 3. For this wage contract, (wL1 ; w
L
2 ) = (0; 3);

the Principal�s pro�t is

E [X(1)]� 1
2
(3) = 6� 3

2
= 4:5 > 4� wL = 63

16
:

Hence the optimal to o¤er the agents of type L is (~eL; ~wL1 ; ~w
L
2 ) = (1; 0; 3):

The incentive compatible contract for the agents of type H to exert high e¤ort solves the

system �
1� 1

2

�
p
w1 +

�
1

2

�
p
w2 = 2�

1� 1
2

�
p
w1 +

�
1

2

�
p
w2 � 2 =

3

4

p
w1 +

1

4

p
w2 �

2

4
;

Again the solution to this system involves a negative wage w1. Setting w1 = 0; requires

w2 = 6 in order to satisfy the incentive compatibility constraint. The Principal�s pro�t with

this wage contract (wH1 ; w
H
2 ) = (0; 6) is

E [X(1)]� 1
2
(6) = 6� 3 < 4� �wH =

15

4
:

Hence the optimal contract to o¤er the agents of type H is (~eH ; ~wH1 ; ~w
H
2 ) = (1=4; 1=4; 1=4):
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(c) (15 points) Now assume that e¤ort is veri�able, and that only two e¤orts levels,

e = 1=4 and e = 1, are feasible. However, the Principal does not observe the agent�s type.

Agents of typeH and L are present in the population of agents in fractions q 2 (0; 1) and 1�q;
respectively. Identify the Principal�s optimal menu of contracts for each value of q. (Keep

on mind that the Principal may choose to o¤er a single contract, which may be acceptable

either both types or only by the low cost type, if either of these contracts generates more

pro�t than the optimal menu of contracts satisfying participation and incentive constraints.)

Solution. The Principal may o¤er a single �pooling� contract, which can be either the

contract (e; w) = (1=4; 1=4), which both agents accept, leading to an expected pro�t of

�H = E

�
X(
1

4
)

�
� 1
4
= 4� 1

4
=
64

16
;

or the contract (1; 1); which only the agents of type L accept, leading to the an expected pro�t

of

�L = (1� q) (E[X(1)]� 1) = 5 (1� q) :

The Principal may also design an incentive compatible menu of contracts involving low

e¤ort for the high type, eH = 1=4, and high e¤ort for the low type, eL = 1: As shown in

class, such menu involve wages wL and wH that are identi�ed by participation constraint of

the type H and the incentive of the type L;

p
wH � 2eH (PCH)p

wL � eL �
p
wH � eH (ICL):

That is,

p
wH = 2

�
1

4

�
p
wL � 1 =

p
~wH � 1

4
:

whose solution is wH = 1=4 and

wL =

 
1 +

 r
1

4
� 1
4

!!2
=
25

16
:

For this menu of contracts, f(1=4; 1=4); (1; 25=16)g, the expected pro�t is

�S = q

�
E[X(

1

4
)]� 1

4

�
+ (1� q)

�
E[X(1)]� 25

16

�
= q

�
4� 1

4

�
+ (1� q)

�
6� 25

16

�
=

71

16
� 11
16
q:
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Thus, for low values of q it is optimal to o¤er the contract (1; 1). Speci�cally, for q such

that

5(1� q) > 71

16
� 11
16
q , q <

3

23
.

For high values of q it is optimal to o¤er the contract (1=4; 1=4). Speci�cally, for q such

that
71

16
� 11
16
q <

64

16
, q >

7

11
.

For intermediate values of q; that is, for q 2 ( 3
23
: 7
11
); o¤ering the menu f(1=4; 1=4); (1; 25=16)g

is optimal.
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Exercise 3A. A small town must decide the number of hours of street cleaning service x it
will have. The cost of street cleaning services is 3 euros/hour. Each citizen i 2 f1; 2; 3g is
endowed with �y = 10 euros, and her preferences are described by a utility function of the

form ui(x; y) = y + ai
p
x, where y denotes income (in euros) available to spend on other

goods, and ai > 0 measures citizen i�s intensity of preference for street cleaning service.

Assume that a1 = 2, a2 = 4; and a3 = 6

(a) (10 points) Identify the conditions that characterize interior Pareto optimal, and

Lindahl equilibrium allocations for this economy.

Solution. A Pareto optimal allocation (x; y1; y2; y3) is a solution to the system:

jMRS1(x; y)j+ jMRS2(x; y)j+ jMRS3(x; y)j = 3

y1 + y2 + y3 + 3x = 3�y

Since for i 2 f1; 2; 3g,

MRSi(x; y) = �
@uA=@x

@uA=@y
= � ai

2
p
x
;

this system becomes

2

2
p
x
+

4

2
p
x
+

6

2
p
x
= 3

y1 + y2 + y3 + 3x = 30:

The �rst equation determines the optimal level of public good,

6p
x
= 3) x = 4:

Thus, any allocation (x; y1; y2; y3) such that x = 4 and y1 + y2 + y3 = 18 is Pareto optimal.

In a Lindahl equilibrium the system of personalized prices must be such that for i 2
f1; 2; 3g

jMRSi(x; y)j =
ai
2
p
x
= pi

must hold for x = 4: Hence p1 = 1
2
; p1 = 1; and p3 = 3

2
: Thus, the Lindahl allocation is

(xL; yL1 ; y
L
2 ; y

L
3 ) = (4; 8; 6; 4); and individual utilities are (u

L
1 ; u

L
2 ; u

3
3) = (12; 14; 18):
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(b) (10 points) Calculate the number of hours of street cleaning service under volun-

tary contribution, and determine whether the resulting allocation is Pareto optimal. Is the

Lindahl equilibrium Pareto superior to this allocation?

Solution. Under voluntary contribution, the contribution of individual i 2 f1; 2; 3g; zi 2
R+; solves the problem

maxzi2R+ y + ai

r
z�i + zi
3

subject to:

y + zi = 10;

where z�i is the sum of the contributions of individuals other than i: This problem is equiv-

alent to

maxzi2R+(10� zi) + ai
r
z�i + zi
3

:

The �rst order condition for a solution to this problem is

ai
2
p
z�i + zi

=
p
3

That is

zi = maxf
a2i
12
� z�i; 0g:

Since a3 = 6 > a2 = 4 > a1 = 2; in equilibrium

z�3 + z
�
�3 �

a23
12
= 3:

Therefore z�1 = z
�
2 = 0; and z

�
3 = 3: Hence under voluntary contribution the level of street

cleaning is

x� =
z�1 + z

�
2 + z

�
3

3
= 1;

which is suboptimal, since as shown in part (a) a Pareto optimal allocation involves x = 4:

Computing agents� utilities in this allocation, given by (xV ; yV1 ; y
V
2 ; y

V
3 ) = (1; 10; 10; 7),

we get (uV1 ; u
V
2 ; u

V
3 ) = (12; 14; 13): Thus, individuals 1 and 2 are equally well o¤, whereas

individual 3 is worse o¤, than in the Lindahl equilibrium. Hence the Lindahl equilibrium is,

in this example, Pareto superior to the allocation generated by voluntary contribution. (This

result does not hold generally.)
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Exercise 3B. In any given day, tourists traveling to certain city known to be a pickpocket�s
playground face the risk of loosing the 32 euros they typically carry in their wallet. For the

more alert tourists, this happens with probability pL = 1=4; while for the inattentive ones

this probability is pH = 1=2: Each tourist has an allowance ofW = 100 euros for the day, and

his preferences are described by the von Neumann-Morgenstern utility function u(x) = lnx.

It is known that half of the tourist are alert, and the other half are inattentive. Insurance

companies cannot distinguish amongst tourists of either type.

(a) (10 points) If there is a competitive insurance market, which insurance policies will

be o¤ered?

Solution. As established in class, a competitive equilibrium, when it exists, o¤ers sepa-

rating fair policies (IH ; 0) = (16; 0) and (ÎL; D̂L) such that

ÎL = (32� D̂L)pL

and the inattentive tourist will be indi¤erent between the two policies, i.e.,

1

2
ln
�
100� (32� D̂L)pL � D̂L

�
+
1

2
ln
�
100� (32� D̂L)pL

�
= ln (100� 16) :

This equation may be write for x = DL as

(100� (32� x)=4� x) (100� (32� x)=4) = (100� 16)2 ;

that is

� 3
16
x2 � 46x+ 1408 = 0:

Solving this equation we get D̂L =
16
3

p
793� 368

3
' 27:521:

For these policies to form a competitive equilibrium the alert tourist must prefer the policy

(ÎL; D̂L) to the pooling policy (�I; 0) = (32�p; 0), where

�p =
1

2
pH +

1

2
pL =

3

8
:

That is (�I; 0) = (12; 0):

Since the expected utility of an alert tourist with the separating policy is

1

4
ln

�
100�

�
32�

�
16

3

p
793� 368

3

��
=4�

�
16

3

p
793� 368

3

��
+
3

4
ln

�
100�

�
16

3

p
793� 368

3

�
=4

�
' 4:467;

and his expected utility with the pooling policy is

ln (100� 12) ' 4:477;

there is no competitive equilibrium in this market.
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(b) (10 points) If the market is monopolized by a single company which cannot discrim-

inate amongst tourists by law (i.e., must o¤er a single policy), which policy will be o¤ered?

(Hint. Should the monopoly o¤er full insurance? Should the monopoly o¤er a policy in-

tended for both types of tourists, or one that only inattentive tourist would subscribe?)

Solution. The company must decide with to o¤er a policy that only inattentive tourist

subscribe or one which both types of tourists subscribe Obviously, in either case the company

will o¤er full insurance since it can extract more surplus from the risk averse tourists. The

largest premium the inattentive tourists are will to pay solves the equation

ln (100� x) = 1

2
ln (100� 32) + 1

2
ln (100) ;

that is,

(100� x)2 � (100� 32) (100) = x2 � 200x+ 3200 = 0:

Solving this equation we get I�L = 100� 20
p
17 ' 17:538; and expected pro�ts are

1

2

�
100� 20

p
17� 32pH

�
=
1

2

�
100� 20

p
17� 16

�
' 0:76894:

If the �rm o¤ers a policy that both types subscribe, it has to o¤er it at the maximum

premium the alert tourist are willing to pay, that is,

ln (100� x) = 1

4
ln (100� 32) + 3

4
ln (100) ;

or

(100� x)4 � (100� 32) (100)3 = (100� x)4 � 68000000 = 0;

that is

�I� = 100� 4
p
68000000 ' 9:1913

The expected pro�ts o¤ering this policy are

�I� � 32�p = �I� � 12 < 0:

Hence the company will o¤er the policy (I�L; 0), which will be subscribed only by inattentive

tourists.
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