EXERCISES

CHAPTER 4: Higher order derivatives

4-1. Let $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $u(x, y)=e^{x} \sin y$. Find all the second partial derivatives $D^{2} u$, and verify Schwarz's Theorem.

4-2. Consider the quadratic function $Q: \mathbb{R}^{3} \rightarrow \mathbb{R}$ defined by $Q(x, y, z)=x^{2}+5 y^{2}+4 x y-2 y z$. Compute the Hessian matrix $D^{2} Q$.

4-3. Let $f(x, y, z)=e^{z}+\frac{1}{x}+x e^{-y}$, for $x \neq 0$. Compute

$$
\frac{\partial^{2} f}{\partial x^{2}}, \quad \frac{\partial^{2} f}{\partial x \partial y}, \quad \frac{\partial^{2} f}{\partial y \partial x}, \quad \frac{\partial^{2} f}{\partial y^{2}}
$$

4-4. Let $z=f(x, y), x=a t, y=b t$ where a and b are constant. Consider z as a function of t. Compute $\frac{d^{2} z}{d t^{2}}$ in terms of a, b and the second partial derivatives of $\mathrm{f}: f_{x x}, f_{y y}$ and $f_{x y}$.

4-5. Let $f(x, y)=3 x^{2} y+4 x^{3} y^{4}-7 x^{9} y^{4}$. Compute the Hessian matrix $D^{2} Q .$.
4-6. Let $f, g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be two functions whose partial derivatives are continuous on all of \mathbb{R}^{2} and such that there is a function $\mathrm{n} h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $(f, g)=\nabla h$, that is,

$$
f(x, y)=\frac{\partial h}{\partial x}(x, y) \quad g(x, y)=\frac{\partial h}{\partial y}(x, y)
$$

at every point $(x, y) \in \mathbb{R}^{2}$. What equation do

$$
\frac{\partial f}{\partial y} \quad \text { and } \frac{\partial g}{\partial x}
$$

satisfy?
4-7. The demand function of a consumer by a system of equations of the form

$$
\begin{aligned}
\frac{\partial u}{\partial x} & =\lambda p_{1} \\
\frac{\partial u}{\partial y} & =\lambda p_{2} \\
p_{1} x+p_{2} y & =m
\end{aligned}
$$

where $u(x, y)$ is the utility function of the agent, p_{1} and p_{2} are th prices of the consumption bundles, m is income and $\lambda \in \mathbb{R}$. Assuming that this system determines x, y and λ as functions of the other parameters, determine

$$
\frac{\partial x}{\partial p_{1}}
$$

4-8. Consider the system of equations

$$
\begin{aligned}
z^{2}+t-x y & =0 \\
z t+x^{2} & =y^{2}
\end{aligned}
$$

(a) Prove that it determines z and t as functions of x, y near the point $(1,0,1,-1)$.
(b) Compute the partial derivatives of z and t with respect to x, y at $(1,0)$.
(c) Without solving the system, ¿what is approximate value of $z\left(1^{\prime} 001,0^{\prime} 002\right)$
(d) Compute

$$
\frac{\partial^{2} z}{\partial x \partial y}(1,0)
$$

4-9. Consider the system of equations

$$
\begin{aligned}
x t^{3}+z-y^{2} & =0 \\
4 z t & =x-4
\end{aligned}
$$

(a) Prove that it determines z and t as functions of x, y near the point $(0,1,1,-1)$.
(b) Compute the partial derivatives of z and t with respect to x, y at $(0,1)$.
(c) Without solving the system, i what is approximate value of $z\left(0^{\prime} 001,1^{\prime} 002\right)$
(d) Compute

$$
\frac{\partial^{2} z}{\partial x \partial y}(0,1)
$$

4-10. Find the second order Taylor polinomial for the following functions about the given point.
(a) $f(x, y)=\ln (1+x+2 y)$ about the point $(2,1)$.
(b) $f(x, y)=x^{3}+3 x^{2} y+6 x y^{2}-5 x^{2}+3 x y^{2}$ about the point $(1,2)$.
(c) $f(x, y)=e^{x+y}$ about the point $(0,0)$.
(d) $f(x, y)=\sin (x y)+\cos (x y)$ about the point $(0,0)$.
(e) $f(x, y, z)=x-y^{2}+x z$ about the point $(1,0,3)$.

4-11. For what values of the parameter a is the quadratic form $Q(x, y, z)=x^{2}-2 a x y-2 x z+y^{2}+4 y z+5 z^{2}$ positive definite?

4-12. Study the signature of the following quadratic forms.
(a) $Q_{1}(x, y, z)=x^{2}+7 y^{2}+8 z^{2}-6 x y+4 x z-10 y z$.
(b) $Q_{2}(x, y, z)=-2 y^{2}-z^{2}+2 x y+2 x z+4 y z$.

4-13. Study for what values of a the quadratic form $Q(x, y, z)=a x^{2}+4 a y^{2}+4 a z^{2}+4 x y+2 a x z+4 y z$ is
(a) positive definite.
(b) negative definite.

4-14. Classify the following quadratic forms, depending on the parameters.
a) $Q(x, y, z)=9 x^{2}+3 y^{2}+z^{2}+2 a x z$
b) $Q\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+4 x_{2}^{2}+b x_{3}^{2}+2 a x_{1} x_{2}+2 x_{2} x_{3}$

4-15. Let $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a concave function so that for every $v_{1}, v_{2} \in \mathbb{R}^{n}$ and $\lambda \in[0,1]$, we have that $u\left(\lambda v_{1}+\right.$ $\left.(1-\lambda) v_{2}\right) \geq \lambda u\left(v_{1}\right)+(1-\lambda) u\left(v_{2}\right)$. Show that $S=$ $\left\{v \in \mathbb{R}^{n}: u(v) \geq k\right\}$ is a convex set. For a concave $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$, the figure represents its graph $S=$ $\left\{(x, y) \in \mathbb{R}^{2}: u(x, y) \geq k\right\}$

4-16. State the previous problem for a convex function $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
4-17. Determine the domains of the plane where the following functions are convex or concave.
(a) $f(x, y)=(x-1)^{2}+x y^{2}$.
(b) $g(x, y)=\frac{x^{3}}{3}-4 x y+12 x+y^{2}$.
(c) $h(x, y)=e^{-x}+e^{-y}$.
(d) $k(x, y)=e^{x y}$.
(e) $l(x, y)=\ln \sqrt{x y}$.

4-18. Determine the values of the parameters a and b so that the following functions are convex in their domains.
(a) $f(x, y, z)=a x^{2}+y^{2}+2 z^{2}-4 a x y+2 y z$
(b) $g(x, y)=4 a x^{2}+8 x y+b y^{2}$

4-19. Discuss the concavity and convexity of the function $f(x, y)=-6 x^{2}+(2 a+4) x y-y^{2}+4 a y$ according to the values of a.

4-20. Find the largest convex set of the plane where the function $f(x, y)=x^{2}-y^{2}-x y-x^{3}$ is concave.

