EXERCISES

CHAPTER 4: Higher order derivatives

- 4-1. Let $u: \mathbb{R}^2 \to \mathbb{R}$ be defined by $u(x,y) = e^x \sin y$. Find all the second partial derivatives D^2u , and verify Schwarz's Theorem.
- 4-2. Consider the quadratic function $Q: \mathbb{R}^3 \to \mathbb{R}$ defined by $Q(x,y,z) = x^2 + 5y^2 + 4xy 2yz$. Compute the Hessian matrix D^2Q .
- 4-3. Let $f(x, y, z) = e^z + \frac{1}{x} + xe^{-y}$, for $x \neq 0$. Compute

$$\frac{\partial^2 f}{\partial x^2}, \quad \frac{\partial^2 f}{\partial x \partial y}, \quad \frac{\partial^2 f}{\partial y \partial x}, \quad \frac{\partial^2 f}{\partial y^2}$$

- 4-4. Let z = f(x, y), x = at, y = bt where a and b are constant. Consider z as a function of t. Compute $\frac{d^2z}{dt^2}$ in terms of a, b and the second partial derivatives of f: f_{xx} , f_{yy} and f_{xy} .
- 4-5. Let $f(x,y) = 3x^2y + 4x^3y^4 7x^9y^4$. Compute the Hessian matrix D^2Q ..
- 4-6. Let $f,g:\mathbb{R}^2\to\mathbb{R}$ be two functions whose partial derivatives are continuous on all of \mathbb{R}^2 and such that there is a function $n h:\mathbb{R}^2\to\mathbb{R}$ such that $(f,g)=\nabla h$, that is,

$$f(x,y) = \frac{\partial h}{\partial x}(x,y)$$
 $g(x,y) = \frac{\partial h}{\partial y}(x,y)$

at every point $(x, y) \in \mathbb{R}^2$. What equation do

$$\frac{\partial f}{\partial y}$$
 and $\frac{\partial g}{\partial x}$

satisfy?

4-7. The demand function of a consumer by a system of equations of the form

$$\frac{\partial u}{\partial x} = \lambda p_1$$

$$\frac{\partial u}{\partial y} = \lambda p_2$$

$$p_1 x + p_2 y = m$$

where u(x,y) is the utility function of the agent, p_1 and p_2 are th prices of the consumption bundles, m is income and $\lambda \in \mathbb{R}$. Assuming that this system determines x, y and λ as functions of the other parameters, determine

$$\frac{\partial x}{\partial p_1}$$

4-8. Consider the system of equations

$$z^2 + t - xy = 0$$
$$zt + x^2 = y^2$$

- (a) Prove that it determines z and t as functions of x, y near the point (1,0,1,-1).
- (b) Compute the partial derivatives of z and t with respect to x, y at (1,0).
- (c) Without solving the system, what is approximate value of z(1'001, 0'002)
- (d) Compute

$$\frac{\partial^2 z}{\partial x \partial y}(1,0)$$

4-9. Consider the system of equations

$$xt^3 + z - y^2 = 0$$
$$4zt = x - 4$$

- (a) Prove that it determines z and t as functions of x, y near the point (0,1,1,-1).
- (b) Compute the partial derivatives of z and t with respect to x, y at (0,1).
- (c) Without solving the system, i what is approximate value of z(0'001, 1'002)
- (d) Compute

$$\frac{\partial^2 z}{\partial x \partial y}(0,1)$$

- 4-10. Find the second order Taylor polinomial for the following functions about the given point.
 - (a) $f(x,y) = \ln(1+x+2y)$ about the point (2,1).
 - (b) $f(x,y) = x^3 + 3x^2y + 6xy^2 5x^2 + 3xy^2$ about the point (1,2).
 - (c) $f(x,y) = e^{x+y}$ about the point (0,0).
 - (d) $f(x,y) = \sin(xy) + \cos(xy)$ about the point (0,0). (e) $f(x,y,z) = x y^2 + xz$ about the point (1,0,3).
- 4-11. For what values of the parameter a is the quadratic form $Q(x,y,z) = x^2 2axy 2xz + y^2 + 4yz + 5z^2$ positive definite?
- 4-12. Study the signature of the following quadratic forms.
 - (a) $Q_1(x, y, z) = x^2 + 7y^2 + 8z^2 6xy + 4xz 10yz$. (b) $Q_2(x, y, z) = -2y^2 z^2 + 2xy + 2xz + 4yz$.
- 4-13. Study for what values of a the quadratic form $Q(x, y, z) = ax^2 + 4ay^2 + 4az^2 + 4xy + 2axz + 4yz$ is
 - (a) positive definite.
 - (b) negative definite.
- 4-14. Classify the following quadratic forms, depending on the parameters.

a)
$$Q(x, y, z) = 9x^2 + 3y^2 + z^2 + 2axz$$

b)
$$Q(x_1, x_2, x_3) = x_1^2 + 4x_2^2 + bx_3^2 + 2ax_1x_2 + 2x_2x_3$$

4-15. Let $u: \mathbb{R}^n \to \mathbb{R}$ be a concave function so that for every $v_1, v_2 \in \mathbb{R}^n$ and $\lambda \in [0, 1]$, we have that $u(\lambda v_1 +$ $(1-\lambda)v_2 \ge \lambda u(v_1) + (1-\lambda)u(v_2)$. Show that S= $\{v \in \mathbb{R}^n : u(v) \ge k\}$ is a convex set. For a concave $u: \mathbb{R}^2 \to \mathbb{R}$, the figure represents its graph S= $\{(x,y) \in \mathbb{R}^2: \ u(x,y) \ge k\}$

- 4-16. State the previous problem for a convex function $u: \mathbb{R}^n \to \mathbb{R}$.
- 4-17. Determine the domains of the plane where the following functions are convex or concave.

 - (a) $f(x,y) = (x-1)^2 + xy^2$. (b) $g(x,y) = \frac{x^3}{3} 4xy + 12x + y^2$. (c) $h(x,y) = e^{-x} + e^{-y}$.

 - (d) $k(x, y) = e^{xy}$.
 - (e) $l(x,y) = \ln \sqrt{xy}$.
- 4-18. Determine the values of the parameters a and b so that the following functions are convex in their domains.
 - (a) $f(x, y, z) = ax^2 + y^2 + 2z^2 4axy + 2yz$
 - (b) $g(x,y) = 4ax^2 + 8xy + by^2$
- 4-19. Discuss the concavity and convexity of the function $f(x,y) = -6x^2 + (2a+4)xy y^2 + 4ay$ according to the values of a.

4-20. Find the largest convex set of the plane where the function $f(x,y) = x^2 - y^2 - xy - x^3$ is concave.