CHAPTER 4: Higher order derivatives

4-1. Let $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $u(x, y)=e^{x} \sin y$. Find all the second partial derivatives $D^{2} u$, and verify Schwarz's Theorem.

Solution: The partial derivatives of the function $u(x, y)=e^{x} \sin y$ are

$$
\frac{\partial u}{\partial x}=e^{x} \sin y, \quad \frac{\partial u}{\partial y}=e^{x} \cos y
$$

Therefore the Hessian is

$$
\left(\begin{array}{cc}
e^{x} \sin y & e^{x} \cos y \\
e^{x} \cos y & -e^{x} \sin y
\end{array}\right)
$$

4-2. Consider the quadratic function $Q: \mathbb{R}^{3} \rightarrow \mathbb{R}$ defined by $Q(x, y, z)=x^{2}+5 y^{2}+4 x y-2 y z$. Compute the Hessian matrix $D^{2} Q$.

Solution: The gradient of Q is

$$
\nabla\left(x^{2}+5 y^{2}+4 x y-2 y z\right)=(2 x+4 y, 10 y+4 x-2 z,-2 y)
$$

The Hessian matrix of Q is

$$
\left(\begin{array}{ccc}
2 & 4 & 0 \\
4 & 10 & -2 \\
0 & -2 & 0
\end{array}\right)
$$

4-3. Let $f(x, y, z)=e^{z}+\frac{1}{x}+x e^{-y}$, for $x \neq 0$. Compute

$$
\frac{\partial^{2} f}{\partial x^{2}}, \quad \frac{\partial^{2} f}{\partial x \partial y}, \quad \frac{\partial^{2} f}{\partial y \partial x}, \quad \frac{\partial^{2} f}{\partial y^{2}}
$$

Solution: The partial derivatives of the function $f(x, y, z)=e^{z}+\frac{1}{x}+x e^{-y}$ are

$$
\begin{aligned}
\frac{\partial^{2} f(x, y, z)}{\partial x^{2}} & =\frac{2}{x^{3}} \\
\frac{\partial^{2} f(x, y, z)}{\partial x \partial y} & =-e^{-y} \\
\frac{\partial^{2} f(x, y, z)}{\partial y \partial x} & =-e^{-y} \\
\frac{\partial^{2} f(x, y, z)}{\partial y^{2}} & =x e^{-y}
\end{aligned}
$$

4-4. Let $z=f(x, y), x=a t, y=b t$ where a and b are constant. Consider z as a function of t. Compute $\frac{d^{2} z}{d t^{2}}$ in terms of a, b and the second partial derivatives of $f: f_{x x}, f_{y y}$ and $f_{x y}$.

Solution: Since the function is of class C^{2}, we may apply Schwarz's Theorem.

$$
\begin{aligned}
\frac{d}{d t}(f(a t, b t)) & =a f_{x}(a t, b t)+b f_{y}(a t, b t) \\
\frac{d^{2}}{d t^{2}}(f(a t, b t)) & =a^{2} f_{x x}(a t, b t)+2 a b f_{x y}(a t, b t)+b^{2} f_{y y}(a t, b t)
\end{aligned}
$$

4-5. Let $f(x, y)=3 x^{2} y+4 x^{3} y^{4}-7 x^{9} y^{4}$. Compute the Hessian matrix $D^{2} Q$.
Solution: The gradient of f is

$$
\nabla f(x, y)=\left(6 x y+12 x^{2} y^{4}-63 x^{8} y^{4}, 3 x^{2}+16 x^{3} y^{3}-28 x^{9} y^{3}\right)
$$

The Hessian matrix of f is

$$
\mathrm{H}(x, y)=\left(\begin{array}{cc}
6 y+24 x y^{4}-504 x^{7} y^{4} & 6 x+48 x^{2} y^{3}-252 x^{8} y^{3} \\
6 x+48 x^{2} y^{3}-252 x^{8} y^{3} & 48 x^{3} y^{2}-74 x^{9} y^{2}
\end{array}\right)
$$

4-6. Let $f, g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be two functions whose partial derivatives are continuous on all of \mathbb{R}^{2} and such that there is a function $n h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $(f, g)=\nabla h$, that is,

$$
f(x, y)=\frac{\partial h}{\partial x}(x, y) \quad g(x, y)=\frac{\partial h}{\partial y}(x, y)
$$

at every point $(x, y) \in \mathbb{R}^{2}$. What equation do

$$
\frac{\partial f}{\partial y} \quad \text { and } \frac{\partial g}{\partial x}
$$

satisfy?
Solution: On the one hand, we have that

$$
\frac{\partial f}{\partial y}=\frac{\partial\left(\frac{\partial h}{\partial x}\right)}{\partial y}=\frac{\partial^{2} h}{\partial x \partial y}
$$

On the other hand, we see that

$$
\frac{\partial g}{\partial x}=\frac{\partial\left(\frac{\partial h}{\partial y}\right)}{\partial x}=\frac{\partial^{2} h}{\partial y \partial x}
$$

Since the functions f and g have continuous partial derivatives on all of \mathbb{R}^{2}, the function h is of class C^{2}. By Schwartz's Theorem, we conclude that

$$
\frac{\partial^{2} h}{\partial x \partial y}=\frac{\partial^{2} h}{\partial y \partial x}
$$

That is,

$$
\frac{\partial f}{\partial y}=\frac{\partial g}{\partial x}
$$

4-7. The demand function of a consumer by a system of equations of the form

$$
\begin{aligned}
\frac{\partial u}{\partial x} & =\lambda p_{1} \\
\frac{\partial u}{\partial y} & =\lambda p_{2} \\
p_{1} x+p_{2} y & =m
\end{aligned}
$$

where $u(x, y)$ is the utility function of the agent, p_{1} and p_{2} are th prices of the consumption bundles, m is income and $\lambda \in \mathbb{R}$. Assuming that this system determines x, y and λ as functions of the other parameters, determine

$$
\frac{\partial x}{\partial p_{1}}
$$

Solution: First we write the system as

$$
\begin{aligned}
f_{1} & \equiv \frac{\partial u}{\partial x}-\lambda p_{1}=0 \\
f_{2} & \equiv \frac{\partial u}{\partial y}-\lambda p_{2}=0 \\
f_{3} & \equiv p_{1} x+p_{2} y-m=0
\end{aligned}
$$

and compute

$$
\frac{\partial\left(f_{1}, f_{2}, f_{3}\right)}{\partial(x, y, \lambda)}=\left|\begin{array}{ccc}
\frac{\partial^{2} u}{\partial x^{2}} & \frac{\partial^{2} u}{\partial x \partial y} & -p_{1} \\
\frac{\partial^{2} u}{\partial x \partial y} & \frac{\partial^{2} u}{\partial y^{2}} & -p_{2} \\
p_{1} & p_{2} & 0
\end{array}\right|=\frac{\partial^{2} u}{\partial x^{2}} p_{2}^{2}-\frac{\partial^{2} u}{\partial x \partial y} p_{1} p_{2}+\frac{\partial^{2} u}{\partial y^{2}} p_{1}^{2}
$$

We suppose that this determinant does not vanish and that we may apply the mean value Theorem. Differentiating with respect to p_{1} (but assuming now that x, y, λ depend on the other parameters) we obtain

$$
\begin{gathered}
\frac{\partial^{2} u}{\partial x^{2}} \frac{\partial x}{\partial p_{1}}+\frac{\partial^{2} u}{\partial x \partial y} \frac{\partial y}{\partial p_{1}}-\frac{\partial \lambda}{\partial p_{1}} p_{1}-\lambda=0 \\
\frac{\partial^{2} u}{\partial x \partial y} \frac{\partial x}{\partial p_{1}}+\frac{\partial^{2} u}{\partial y^{2}} \frac{\partial y}{\partial p_{1}}-\frac{\partial \lambda}{\partial p_{1}} p_{2}=0 \\
x+p_{1} \frac{\partial x}{\partial p_{1}}+p_{2} \frac{\partial y}{\partial p_{1}}=0
\end{gathered}
$$

which may be written as

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial x^{2}} \frac{\partial x}{\partial p_{1}} & +\frac{\partial^{2} u}{\partial x \partial y} \frac{\partial y}{\partial p_{1}}-\frac{\partial \lambda}{\partial p_{1}} p_{1}=\lambda \\
\frac{\partial^{2} u}{\partial x \partial y} \frac{\partial x}{\partial p_{1}} & +\frac{\partial^{2} u}{\partial y^{2}} \frac{\partial y}{\partial p_{1}}-\frac{\partial \lambda}{\partial p_{1}} p_{2}=0 \\
p_{1} \frac{\partial x}{\partial p_{1}} & +p_{2} \frac{\partial y}{\partial p_{1}}=-x
\end{aligned}
$$

The unknowns of the above system are

$$
\frac{\partial x}{\partial p_{1}}, \quad \frac{\partial y}{\partial p_{1}}, \quad \frac{\partial \lambda}{\partial p_{1}}
$$

We see that the determinant of the system is

$$
\frac{\partial\left(f_{1}, f_{2}, f_{3}\right)}{\partial(x, y, \lambda)}
$$

Using Cramer's rule we see that,

$$
\frac{\partial x}{\partial p_{1}}=\frac{\left|\begin{array}{ccc}
\lambda & \frac{\partial^{2} u}{\partial x \partial y} & -p_{1} \\
0 & \frac{\partial^{2} u}{\partial y^{2}} & -p_{2} \\
-x & p_{2} & 0
\end{array}\right|}{\frac{\partial^{2} u}{\partial x^{2}} p_{2}^{2}-\frac{\partial^{2} u}{\partial x \partial y} p_{1} p_{2}+\frac{\partial^{2} u}{\partial y^{2}} p_{1}^{2}}=\frac{\lambda p_{2}^{2}+m \frac{\partial^{2} u}{\partial x \partial y} p_{2}-m \frac{\partial^{2} u}{\partial y^{2}} p_{1}}{\frac{\partial^{2} u}{\partial x^{2}} p_{2}^{2}-\frac{\partial^{2} u}{\partial x \partial y} p_{1} p_{2}+\frac{\partial^{2} u}{\partial y^{2}} p_{1}^{2}}
$$

4-8. Consider the system of equations

$$
\begin{aligned}
z^{2}+t-x y & =0 \\
z t+x^{2} & =y^{2}
\end{aligned}
$$

(a) Prove that it determines z and t as functions of x, y near the point $(1,0,1,-1)$.
(b) Compute the partial derivatives of z and t with respect to x, y at $(1,0)$.
(c) Without solving the system, iwhat is approximate value of $z\left(1^{\prime} 001,0^{\prime} 002\right)$
(d) Compute

$$
\frac{\partial^{2} z}{\partial x \partial y}(1,0)
$$

Solution:

(a) First we write the system as

$$
\begin{aligned}
& f_{1} \equiv z^{2}+t-x y=0 \\
& f_{2} \equiv z t+x^{2}-y^{2}=0
\end{aligned}
$$

and compute

$$
\frac{\partial\left(f_{1}, f_{2}\right)}{\partial(z, t)}=\left|\begin{array}{cc}
2 z & 1 \\
t & z
\end{array}\right|=2 z^{2}-t
$$

which does not vanish for $z=1, t=-1$. Therefore, we may apply the implicit function Theorem.

Differentiating the above system with respect to x we obtain

$$
\begin{array}{r}
2 z \frac{\partial z}{\partial x}+\frac{\partial t}{\partial x}-y=0 \\
t \frac{\partial z}{\partial x}+z \frac{\partial t}{\partial x}+2 x=0
\end{array}
$$

Now we plug in the values $x=1, y=0, z=1, t=-1$ and obtain

$$
\begin{aligned}
2 \frac{\partial z}{\partial x}(1,0) & +\frac{\partial t}{\partial x}(1,0)
\end{aligned}=0, ~=\frac{\partial t}{\partial x}(1,0)=-2
$$

so

$$
\frac{\partial z}{\partial x}(1,0)=\frac{2}{3}, \quad \frac{\partial t}{\partial x}=-\frac{4}{3}
$$

Differentiating the above system with respect to y we obtain

$$
\begin{align*}
2 z \frac{\partial z}{\partial y}+\frac{\partial t}{\partial y}-x & =0 \tag{1}\\
t \frac{\partial z}{\partial y}+z \frac{\partial t}{\partial y}-2 y & =0
\end{align*}
$$

Now we plug in the values $x=1, y=0, z=1, t=-1$ and obtain

$$
\begin{aligned}
2 \frac{\partial z}{\partial y}(1,0)+\frac{\partial t}{\partial y}(1,0) & =1 \\
-\frac{\partial z}{\partial y}(1,0)+\frac{\partial t}{\partial y}(1,0) & =0
\end{aligned}
$$

so

$$
\frac{\partial z}{\partial y}(1,0)=\frac{1}{3}, \quad \frac{\partial t}{\partial y}(1,0)=\frac{1}{3}
$$

(b) We use Taylor's first order approximation about the point $(1,0)$

$$
P_{1}(x, y)=z(1,0)+\frac{\partial z}{\partial x}(1,0)(x-1)+\frac{\partial z}{\partial y}(1,0) y=1+\frac{2}{3}(x-1)+\frac{y}{3}
$$

and we obtain that

$$
z\left(1^{\prime} 001,0^{\prime} 002\right) \approx P\left(1^{\prime} 001,0^{\prime} 002\right)=1+\frac{0^{\prime} 002}{3}+\frac{0^{\prime} 002}{3}=1^{\prime} 00133
$$

(c) Differentiating implicitly the system ?? with respect to x,

$$
\begin{aligned}
2 \frac{\partial z}{\partial x} \frac{\partial z}{\partial y}+2 z \frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial^{2} t}{\partial x \partial y}-1 & =0 \\
\frac{\partial t}{\partial x} \frac{\partial z}{\partial y}+t \frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial z}{\partial x} \frac{\partial t}{\partial y}+z \frac{\partial^{2} t}{\partial x \partial y} & =0
\end{aligned}
$$

Now we plug in the values
$x=1, \quad y=0, \quad z=1, \quad t=-1, \quad \frac{\partial z}{\partial x}(1,0)=\frac{2}{3}, \quad \frac{\partial t}{\partial x}=-\frac{4}{3}, \quad \frac{\partial z}{\partial y}(1,0)=\frac{1}{3}, \quad \frac{\partial t}{\partial y}=\frac{1}{3}$
so the system becomes

$$
\begin{aligned}
2 \frac{\partial^{2} z}{\partial x \partial y}(1,0)+\frac{\partial^{2} t}{\partial x \partial y}(1,0) & =\frac{5}{9} \\
-\frac{\partial^{2} z}{\partial x \partial y}(1,0) \frac{\partial^{2} t}{\partial x \partial y}(1,0) & =\frac{2}{9}
\end{aligned}
$$

and solving it we obtain that

$$
\frac{\partial^{2} t}{\partial x \partial y}(1,0)=\frac{3}{9}, \quad \frac{\partial^{2} z}{\partial x \partial y}(1,0)=\frac{1}{9}
$$

4-9. Consider the system of equations

$$
\begin{aligned}
x t^{3}+z-y^{2} & =0 \\
4 z t & =x-4
\end{aligned}
$$

(a) Prove that it determines z and t as functions of x, y near the point $(0,1,1,-1)$.
(b) Compute the partial derivatives of z and t with respect to x, y at $(0,1)$.
(c) Without solving the system, ¿what is approximate value of $z\left(0^{\prime} 001,1^{\prime} 002\right)$
(d) Compute

$$
\frac{\partial^{2} z}{\partial x \partial y}(0,1)
$$

Solution:

(a) First we write the system as

$$
\begin{aligned}
f_{1} & \equiv x t^{3}+z-y^{2}=0 \\
f_{2} & \equiv 4 z t-x+4=0
\end{aligned}
$$

and compute

$$
\frac{\partial\left(f_{1}, f_{2}\right)}{\partial(z, t)}=\left|\begin{array}{cc}
1 & 3 x t^{2} \\
4 t & 4 z
\end{array}\right|=4 z-12 x t^{3}
$$

which does not vanish for $x=0, y=1, z=1, t=-1$. Therefore, we may apply the implicit function Theorem.
Differentiating the above system with respect to x we obtain

$$
\begin{aligned}
t^{3}+3 x t^{2} \frac{\partial t}{\partial x}+\frac{\partial z}{\partial x} & =0 \\
4 t \frac{\partial z}{\partial x}+4 z \frac{\partial t}{\partial x}-1 & =0
\end{aligned}
$$

Now we plug in the values $x=0, y=1, z=1, t=-1$ and obtain

$$
\begin{aligned}
-1++\frac{\partial z}{\partial x}(0,1) & =0 \\
-4 \frac{\partial z}{\partial x}(0,1)+4 \frac{\partial t}{\partial x}(0,1)-1 & =0
\end{aligned}
$$

so

$$
\frac{\partial z}{\partial x}(0,1)=1, \quad \frac{\partial t}{\partial x}(0,1)=\frac{5}{4}
$$

Differentiating the above system with respect to y we obtain

$$
\begin{align*}
3 x t^{2} \frac{\partial t}{\partial y}+\frac{\partial z}{\partial y}-2 y & =0 \tag{2}\\
t \frac{\partial z}{\partial y}+z \frac{\partial t}{\partial y} & =0
\end{align*}
$$

Now we plug in the values $x=0, y=1, z=1, t=-1$ and obtain

$$
\begin{aligned}
\frac{\partial z}{\partial y}(0,1)-2 & =0 \\
-\frac{\partial z}{\partial y}(0,1)+\frac{\partial t}{\partial y}(0,1) & =0
\end{aligned}
$$

so

$$
\frac{\partial z}{\partial y}(0,1)=2, \quad \frac{\partial t}{\partial y}(0,1)=2
$$

(b) We use Taylor's first order approximation about the point $(0,1)$,

$$
P_{1}(x, y)=z(0,1)+\frac{\partial z}{\partial x}(0,1) x+\frac{\partial z}{\partial y}(0,1)(y-1)=x+2 y-1
$$

and we obtain that

$$
z\left(0^{\prime} 001,1^{\prime} 002\right) \approx P\left(0^{\prime} 001,1^{\prime} 002\right)=0^{\prime} 001+2^{\prime} 004-1=1^{\prime} 005
$$

(c) Differentiating implicitly the system ?? with respect to x,

$$
\begin{aligned}
3 t^{2} \frac{\partial t}{\partial y}+6 x t \frac{\partial t}{\partial x} \frac{\partial t}{\partial y}+3 x t^{2} \frac{\partial^{2} t}{\partial x \partial y}+\frac{\partial^{2} z}{\partial x \partial y} & =0 \\
\frac{\partial t}{\partial x} \frac{\partial z}{\partial y}+t \frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial z}{\partial x} \frac{\partial t}{\partial y}+z \frac{\partial^{2} t}{\partial x \partial y} & =0
\end{aligned}
$$

Now we plug in the values
$x=0, y=1, z=1, t=-1, \quad \frac{\partial z}{\partial x}(0,1)=1, \quad \frac{\partial t}{\partial x}(0,1)=\frac{5}{4}, \quad \frac{\partial z}{\partial y}(0,1)=2, \quad \frac{\partial t}{\partial y}(0,1)=2$
so the system becomes

$$
\begin{aligned}
6+\frac{\partial^{2} z}{\partial x \partial y}(0,1) & =0 \\
\frac{9}{2}-\frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial^{2} t}{\partial x \partial y} & =0
\end{aligned}
$$

and solving it we obtain that

$$
\frac{\partial^{2} t}{\partial x \partial y}(0,1)=-\frac{21}{2}, \quad \frac{\partial^{2} z}{\partial x \partial y}(0,1)=-6
$$

4-10. Find the second order Taylor polinomial for the following functions about the given point.
(a) $f(x, y)=\ln (1+x+2 y)$ about the point $(2,1)$.
(b) $f(x, y)=x^{3}+3 x^{2} y+6 x y^{2}-5 x^{2}+3 x y^{2}$ about the point $(1,2)$.
(c) $f(x, y)=e^{x+y}$ about the point $(0,0)$.
(d) $f(x, y)=\sin (x y)+\cos (x y)$ about the point $(0,0)$.
(e) $f(x, y, z)=x-y^{2}+x z$ about the point $(1,0,3)$.

Solution: The Taylor polynomial of order 2 of f around the point x_{0} is

$$
P_{2}(x)=f\left(x_{0}\right)+\nabla f\left(x_{0}\right) \cdot\left(x-x_{0}\right)+\frac{1}{2!}\left(x-x_{0}\right)^{t} H f\left(x_{0}\right)\left(x-x_{0}\right)
$$

(a) $f(x, y)=\log (1+x+2 y)$ in $(2,1)$. Since,

$$
\nabla f(2,1)=\left.\left(\frac{1}{1+x+2 y}, \frac{2}{1+x+2 y}\right)\right|_{x=2, y=1}=\left(\frac{1}{5}, \frac{2}{5}\right)
$$

the Hessian is

$$
\left.\left(\begin{array}{cc}
-\frac{1}{(1+x+2 y)^{2}} & -\frac{2}{(1+x+2 y)^{2}} \\
-\frac{2}{(1+x+2 y)^{2}} & -\frac{4}{(1+x+2 y)^{2}}
\end{array}\right)\right|_{x=2, y=1}=\left(\begin{array}{cc}
-\frac{1}{25} & -\frac{2}{25} \\
-\frac{2}{25} & -\frac{4}{25}
\end{array}\right)
$$

and

$$
f(2,1)=\ln 5
$$

we have that Taylor's polynomial is

$$
P_{2}(x)=\ln 5+\frac{1}{5}(x-2)+\frac{2}{5}(y-1)+-\frac{1}{50}(x-2)^{2}-\frac{2}{25}(x-2)(y-1)-\frac{2}{25}(y-1)^{2}
$$

(b) $f(x, y)=x^{3}+3 x^{2} y+6 x y^{2}-5 x^{2}+3 x y^{2}$ in $(1,2)$. Since,

$$
\nabla f(1,2)=\left.\left(3 x^{2}+6 y x+9 y^{2}-10 x, 3 x^{2}+18 y x\right)\right|_{x=1, y=2}=(41,39)
$$

the Hessian is

$$
\left.\left(\begin{array}{cc}
6 x+6 y-10 & 6 x+18 y \\
6 x+18 y & 18 x
\end{array}\right)\right|_{x=1, y=2}=\left(\begin{array}{cc}
8 & 42 \\
42 & 18
\end{array}\right)
$$

and

$$
f(1,2)=38
$$

we have that Taylor's polynomial is

$$
P_{2}(x)=38+41(x-1)+39(y-2)+4(x-1)^{2}+42(x-1)(y-2)+9(y-2)^{2}
$$

(c) $f(x, y)=e^{x+y}$ at the point $(0,0)$. We have that $f(0,0)=1$. The gradient is

$$
\left.\nabla f(0,0)=\left.\left(e^{x+y}, e^{x+y}\right)\right|_{x=0, y=0}=\left(e^{0}, e^{0}\right)\right]
$$

and the Hessian is

$$
\left.\left(\begin{array}{ll}
e^{x+y} & e^{x+y} \\
e^{x+y} & e^{x+y}
\end{array}\right)\right|_{x=0, y=0}=\left(\begin{array}{ll}
e^{0} & e^{0} \\
e^{0} & e^{0}
\end{array}\right)
$$

Thus, Taylor's polynomial is

$$
P_{2}(x)=1+1 x+1 y+\frac{1}{2!}\left(1 x^{2}+2 x y+y^{2}\right)=1+x+y+\frac{1}{2} x^{2}+y x+\frac{1}{2} y^{2}
$$

(d) $f(x, y)=\sin (x y)+\cos (x y)$ at the point $(0,0)$. First, $f(0,0)=1$. The gradient is

$$
\nabla f(0,0)=\left.((\cos y x) y-(\sin y x) y,(\cos y x) x-(\sin y x) x)\right|_{x=0, y=0}=(0,0)
$$

The second derivatives are

$$
\begin{aligned}
\frac{\partial^{2} f}{(\partial x)^{2}} & =-y^{2} \sin (y x)-y^{2} \cos (y x) \\
\frac{\partial^{2} f}{\partial x \partial y} & =-y x \sin (y x)+\cos (y x)-y x \cos (y x)-\sin (y x) \\
\frac{\partial^{2} f}{(\partial y)^{2}} & =x^{2}-x^{2} \cos (y x)
\end{aligned}
$$

and Hessian at the point $(0,0)$ is

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Hence, Taylor's polynomial is

$$
P_{2}(x, y)=1+y x
$$

(e) $f(x, y, z)=x-y^{2}+x z$ at the point $(1,0,3)$. First, $f(1,0,3)=4$. The gradient is

$$
\nabla f(1,0,3)=\left.(1+z,-2 y, x)\right|_{x=1, y=0, z=3}=(4,0,1)
$$

and the Hessian is

$$
\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & -2 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

Hence, Taylor's polynomial is

$$
P_{2}(x, y, z)=4+4(x-1)+(z-3)+\frac{1}{2!}\left(-2 y^{2}+2(x-1)(z-3)\right)
$$

4-11. For what values of the parameter a is the quadratic form $Q(x, y, z)=x^{2}-2 a x y-2 x z+y^{2}+4 y z+5 z^{2}$ positive definite?

Solution: $Q(x, y, z)=x^{2}-2 a x y-2 x z+y^{2}+4 y z+5 z^{2}$
It will be positive definite if $D_{1}>0, D_{2}>0, D_{3}>0$. Let us compute these.
$D_{1}=1$
$D_{2}=\left|\begin{array}{cc}1 & -a \\ -a & 1\end{array}\right|=1-a^{2}>0$ if and only if $|a|<1$.
$D_{3}=\left|\begin{array}{ccc}1 & -a & -1 \\ -a & 1 & 2 \\ -1 & 2 & 5\end{array}\right|=-5 a^{2}+4 a=a(4-5 a)>0$ if and only if $a \in(0,4 / 5)$.
Therefore, the quadratic form is positive definite if $a \in(0,4 / 5)$. When $a=0$ or $a=4 / 5$, we have that $D_{1}>0, D_{2}>0, D_{3}=0$. So, the quadratic form is positive semidefinite, but not positive definite. When $a \in(-\infty, 0) \cup\left(\frac{4}{5},+\infty\right)$ we see that $D_{1}>0, D_{3}<0$ so the quadratic form is indefinite.

4-12. Study the signature of the following quadratic forms.
(a) $Q_{1}(x, y, z)=x^{2}+7 y^{2}+8 z^{2}-6 x y+4 x z-10 y z$.
(b) $Q_{2}(x, y, z)=-2 y^{2}-z^{2}+2 x y+2 x z+4 y z$.

Solution: a) The matrix associated to Q_{1} is $\left(\begin{array}{ccc}1 & -3 & 2 \\ -3 & 7 & -5 \\ 2 & -5 & 8\end{array}\right)$. Let us compute $D_{1}=1>0, D_{2}=$ $\left|\begin{array}{cc}1 & -3 \\ -3 & 7\end{array}\right|=-2$ and $D_{3}=\left|\begin{array}{ccc}1 & -3 & 2 \\ -3 & 7 & -5 \\ 2 & -5 & 8\end{array}\right|=-9$. Therefore, the quadratic form is indefinite. (Note that it was not necessary to compute D_{3})
b) The matrix associated to Q_{2} is $\left(\begin{array}{ccc}0 & 1 & 1 \\ 1 & -2 & 2 \\ 1 & 2 & -1\end{array}\right)$. We see that $D_{1}=0$. Can we still apply the method of principal minors? To do so we perform the following change of variables: $\bar{x}=z, \bar{z}=x$. We see that

$$
Q_{2}(\bar{x}, y, \bar{z})=-2 y^{2}-\bar{x}^{2}+2 \bar{z} y+2 \bar{x} \bar{z}+4 y \bar{x}
$$

whose associated matrix is $\left(\begin{array}{ccc}-1 & 2 & 1 \\ 2 & -2 & 1 \\ 1 & 1 & 0\end{array}\right)$. The principal minors are $D_{1}=-1, D_{2}=\left|\begin{array}{cc}-1 & 2 \\ 2 & -2\end{array}\right|=-2$. Therefore, the quadratic form is indefinite.

Here is another way to do this exercise. Since, $D_{3}=\left|\begin{array}{ccc}0 & 1 & 1 \\ 1 & -2 & 2 \\ 1 & 2 & -1\end{array}\right|=7 \neq 0$. But, $D_{1}=0, D_{2}=-1$, so by Proposition 3.13, the quadratic form is indefinite.

4-13. Study for what values of a the quadratic form $Q(x, y, z)=a x^{2}+4 a y^{2}+4 a z^{2}+4 x y+2 a x z+4 y z$ is
(a) positive definite.
(b) negative definite.

Solution: The matrix associated to the quadratic form $Q(x, y, z)=a x^{2}+4 a y^{2}+4 a z^{2}+4 x y+2 a x z+4 y z$ is

$$
\left(\begin{array}{ccc}
a & 2 & a \\
2 & 4 a & 2 \\
a & 2 & 4 a
\end{array}\right)
$$

(a) We study conditions under which the principal minors satisfy the following
(i) $D_{1}=a>0$.
(ii) $D_{2}=\left|\begin{array}{cc}a & 2 \\ 2 & 4 a\end{array}\right|=4 a^{2}-4=4\left(a^{2}-1\right)>0$. This condition is satisfied if and only if $|a|>1$
(iii) $D_{3}=\left|\begin{array}{ccc}a & 2 & a \\ 2 & 4 a & 2 \\ a & 2 & 4 a\end{array}\right|=12 a^{3}-12 a=12 a\left(a^{2}-1\right)>0$.

Assuming $a>0$, the condition $a\left(a^{2}-1\right)>0$ simplifies to $\left(a^{2}-1\right)>0$ which is satisfied if and only if $|a|>1$. Therefore, Q es positive definite if $a>1$.
(b) We study conditions under which the principal minors satisfy the following
(i) $D_{1}=a<0$.
(ii) $D_{2}=\left|\begin{array}{cc}a & 2 \\ 2 & 4 a\end{array}\right|=4 a^{2}-4=4\left(a^{2}-1\right)>0$ This condition is satisfied if and only if $|a|>1$.

Assuming, $a<0$, the equation $4\left(a^{2}-1\right)>0$ implies that $a<-1$. In the previous part we have seen that $D_{3}=12 a\left(a^{2}-1\right)<0$ if $a<-1$. Therefore, Q is definite negative if $a<-1$.
The above remarks show that Q is indefinite if $a \in(-1,0) \cup(0,1)$. If $a=0$, the quadratic form is $Q(x, y, z)=4 x y+4 y z$ and we see that $Q(1,1,0)=4>0, Q(1,-1,0)=-4<0$, so Q is indefinite. To study the cases $a= \pm 1$ we do the following change of variables

$$
\bar{x}=z, \quad \bar{y}=y, \quad \bar{z}=x
$$

and we obtain the quadratic form
$Q(\bar{x}, \bar{y}, \bar{z})=a \bar{z}^{2}+4 a \bar{y}^{2}+4 a \bar{x}^{2}+4 \bar{z} \bar{y}+2 a \bar{z} \bar{x}+4 \bar{y} \bar{x}=4 a \bar{x}^{2}+4 a \bar{y}^{2}+a \bar{z}^{2}+4 \bar{x} \bar{y}+2 a \bar{z} \bar{x}+4 \bar{y} \bar{x}$
whose associated matrix is

$$
\left(\begin{array}{ccc}
4 a & 2 & a \\
2 & 4 a & 2 \\
a & 2 & a
\end{array}\right)
$$

For this matrix we see that that

$$
D_{1}=4 a, D_{2}=16 a^{2}-4, \quad D_{3}=12 a\left(a^{2}-1\right)
$$

And, for $a=1$ we obtain that

$$
D_{1}=4, D_{2}=8, \quad D_{3}=0
$$

so Q is positive semidefinite. Finally, for $a=-1$ we obtain that

$$
D_{1}=-4, D_{2}=8, \quad D_{3}=0
$$

so Q is negative semidefinite.

4-14. Classify the following quadratic forms, depending on the parameters.
a) $Q(x, y, z)=9 x^{2}+3 y^{2}+z^{2}+2 a x z$
b) $Q\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+4 x_{2}^{2}+b x_{3}^{2}+2 a x_{1} x_{2}+2 x_{2} x_{3}$

Solution: a) The matrix associated to $Q(x, y, z)=9 x^{2}+3 y^{2}+z^{2}+2 a x z$ is $\left(\begin{array}{lll}9 & 0 & a \\ 0 & 3 & 0 \\ a & 0 & 1\end{array}\right)$. The principal minors are $D_{1}=9, D_{2}=\left|\begin{array}{ll}9 & 0 \\ 0 & 3\end{array}\right|=27$ y $D_{3}=\left|\begin{array}{lll}9 & 0 & a \\ 0 & 3 & 0 \\ a & 0 & 1\end{array}\right|=27-3 a^{2}$. Therefore, the quadratic form is
(a) definite positive if $27-3 a^{2}>0$ that is if, $-3<a<3$.
(b) cannot be negative definite since $D_{1}=9>0$.
(c) cannot be negative semidefinite either.
(d) is positive semidefinite if $27-3 a^{2}=0$. That is, if $a=-3 a=3$.
(e) is indefinite if $27-3 a^{2}<0$. That is, if $|a|>3$.
b) The matrix associated to $Q\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+4 x_{2}^{2}+b x_{3}^{2}+2 a x_{1} x_{2}+2 x_{2} x_{3}$ is $\left(\begin{array}{lll}1 & a & 0 \\ a & 4 & 1 \\ 0 & 1 & b\end{array}\right)$. The principal minors are $D_{1}=1>0, D_{2}=\left|\begin{array}{cc}1 & a \\ a & 4\end{array}\right|=4-a^{2}$ y $D_{3}=\left|\begin{array}{ccc}1 & a & 0 \\ a & 4 & 1 \\ 0 & 1 & b\end{array}\right|=4 b-1-a^{2} b=b\left(4-a^{2}\right)-1$.

Hence,
(a) the quadratic form is positive definite if

$$
\left.\begin{array}{c}
4-a^{2}>0 \\
4 b-1-a^{2} b>0
\end{array}\right\}
$$

From the first inequality we obtain the condition $-2<a<2$. De la segunda $b>\frac{1}{4-a^{2}}$. That is, if

$$
\left.\begin{array}{c}
-2<a<2 \\
b>\frac{1}{4-a^{2}}
\end{array}\right\}
$$

(b) the quadratic form cannot be negative definite or semidefinite because $D_{1}=1>0$
(c) If $a \in(-2,2)$ y $b=\frac{1}{4-a^{2}}$, then $D_{3}=4 b-1-a^{2} b=0$ so the quadratic form is positive semidefinite.
(d) If $|a|>2\left(\right.$ so, $\left.4-a^{2}<0\right)$, then the quadratic form is indefinite.
(e) Finally, if $|a|=2$, we get that $\left(\begin{array}{ccc}1 & a & 0 \\ a & 4 & 1 \\ 0 & 1 & b\end{array}\right)$. The principal minors are

$$
D_{1}=1, \quad D_{2}=4-a^{2}=0, \quad D_{3}=4 b-1-a^{2} b=-1
$$

and the quadratic form is indefinite.

4-15. Let $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a concave function so that for every $v_{1}, v_{2} \in \mathbb{R}^{n}$ and $\lambda \in[0,1]$, we have that $u\left(\lambda v_{1}+\right.$ $\left.(1-\lambda) v_{2}\right) \geq \lambda u\left(v_{1}\right)+(1-\lambda) u\left(v_{2}\right)$. Show that $S=$ $\left\{v \in \mathbb{R}^{n}: u(v) \geq k\right\}$ is a convex set. For a concave $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$, the figure represents its graph $S=$ $\left\{(x, y) \in \mathbb{R}^{2}: u(x, y) \geq k\right\}$

Solution: Let $S=\left\{x \in \mathbb{R}^{n}: u(x) \geq k\right\}$. Let $x, y \in S$, so $u(x) \geq k$ and also $u(y) \geq k$. Given a convex combination of these two points, $x_{c}=\lambda x+(1-\lambda) y$ we have that

$$
\begin{aligned}
u\left(x_{c}\right)= & u(\lambda x+(1-\lambda) y) \\
& \geq \lambda u(x)+(1-\lambda) u(y) \quad \text { since } u \text { is concave } \\
& \geq \lambda k+(1-\lambda) k=k
\end{aligned}
$$

Therefore, $x_{c} \in S$ and S is convex.

4-16. State the previous problem for a convex function $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
Solution: Let $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex function. Then, the set $S=\left\{x \in \mathbb{R}^{n}: u(x) \leq k\right\}$ is convex.
4-17. Determine the domains of the plane where the following functions are convex or concave.
(a) $f(x, y)=(x-1)^{2}+x y^{2}$.
(b) $g(x, y)=\frac{x^{3}}{3}-4 x y+12 x+y^{2}$.
(c) $h(x, y)=e^{-x}+e^{-y}$.
(d) $k(x, y)=e^{x y}$.
(e) $l(x, y)=\ln \sqrt{x y}$.

Solution:

(a) First, note that if $x=0$ then $f(0, y)=1$ is constant. Hence, f is concave and convex in the set $\{(0, y): y \in \mathbb{R}\}$. The Hessian matrix of $f(x, y)=(x-1)^{2}+x y^{2}$ is

$$
\left(\begin{array}{cc}
2 & 2 y \\
2 y & 2 x
\end{array}\right)
$$

We see that $D_{1}=2>0, D_{2}=4\left(x-y^{2}\right)$. Since, $D_{1}>0$ the function is not concave in any nonempty subset of \mathbb{R}^{2}. We see that $D_{2} \geq 0$ if and only if $x \geq y^{2}$. The function is convex in the set $\left\{(x, y) \in \mathbb{R}^{2}: x \geq y^{2}\right\}$.
(b) The Hessian matrix of

$$
f(x, y)=\frac{x^{3}}{3}-4 x y+12 x+y^{2}
$$

is

$$
\left(\begin{array}{cc}
2 x & -4 \\
-4 & 2
\end{array}\right)
$$

We see that $D_{1}=2 x, D_{2}=4 x-16$. The function is concave in the convex sets in which $D_{1}<0$ (so $x<0$) and $D_{2} \geq 0$ (that is, $x \geq 4$). Since, both conditions are not compatible, the function is not concave in any non-empty set of \mathbb{R}^{2}.
If $x>0$ y $x \geq 4$ then $D_{1}>0$ y $D_{2} \geq 0$ and we see that the function is convex in the set $\left\{(x, y) \in \mathbb{R}^{2}\right.$: $x \geq 4\}$.
(c) The Hessian matrix of $h(x, y)=e^{-x}+e^{-y}$ is

$$
\left(\begin{array}{cc}
e^{-x} & 0 \\
0 & e^{-y}
\end{array}\right)
$$

Both second derivatives are positive. Hence, the function is convex in \mathbb{R}^{2}.
(d) The Hessian matrix of $k(x, y)=e^{x y}$ is

$$
e^{y x}\left(\begin{array}{cc}
y^{2} & x y+1 \\
x y+1 & x^{2}
\end{array}\right)
$$

Since, $e^{y x}>0$ for every $(x, y) \in \mathbb{R}^{2}$, the signature of the above matrix is the same as the signature of the following one

$$
\left(\begin{array}{cc}
y^{2} & x y+1 \\
x y+1 & x^{2}
\end{array}\right)
$$

For this matrix we obtain that $D_{1}=y^{2} \geq 0, D_{2}=-1-2 x y$. The function is convex if $D_{2}>0$. That is, if $2 x y<-1$. Therefore, the function is convex in the set

$$
A=\left\{(x, y) \in \mathbb{R}^{2}: x y<-1 / 2, x>0\right\}
$$

and also in the set

$$
B=\left\{(x, y) \in \mathbb{R}^{2}: x y<-1 / 2, x<0\right\}
$$

The union $A \cup B$ is not a convex set. Finally, in the convex sets $C=\left\{(x, y) \in \mathbb{R}^{2}: x=0\right\}$ and $D=\left\{(x, y) \in \mathbb{R}^{2}: y=0\right\}$ the function is constant and hence, both concave and convex.
(e) The Hessian matrix of

$$
l(x, y)=\ln (\sqrt{x y})= \begin{cases}\frac{1}{2}(\ln x+\ln y), & \text { if } x, y>0 \\ \frac{1}{2}(\ln (-x)+\ln (-y)), & \text { if } x, y<0\end{cases}
$$

is

$$
\frac{1}{2}\left(\begin{array}{cc}
-\frac{1}{x^{2}} & 0 \\
0 & -\frac{1}{y^{2}}
\end{array}\right)
$$

Clearly, this matrix is negative definite and, therefore, function is concave in \mathbb{R}_{++}^{2} and in \mathbb{R}_{--}^{2}.

4-18. Determine the values of the parameters a and b so that the following functions are convex in their domains.
(a) $f(x, y, z)=a x^{2}+y^{2}+2 z^{2}-4 a x y+2 y z$
(b) $g(x, y)=4 a x^{2}+8 x y+b y^{2}$

Solution:

(a) The Hessian of $f(x, y, z)=a x^{2}+y^{2}+2 z^{2}-4 a x y+2 y z$ is

$$
\left(\begin{array}{ccc}
2 a & -4 a & 0 \\
-4 a & 2 & 2 \\
0 & 2 & 4
\end{array}\right)
$$

Note that

$$
\begin{aligned}
D_{1} & =2 a \\
D_{2} & =\left|\begin{array}{cc}
2 a & -4 a \\
-4 a & 2
\end{array}\right|=4 a-16 a^{2}=4 a(1-4 a) \\
D_{3} & =\left|\begin{array}{ccc}
2 a & -4 a & 0 \\
-4 a & 2 & 2 \\
0 & 2 & 4
\end{array}\right|=8 a-64 a^{2}=8 a(1-8 a)
\end{aligned}
$$

Thus, $D_{1}>0$ is equivalent to $a>0$. Assuming this, the condition $D_{3}>0$ is equivalent to $a<1 / 8$. Furthermore, if $0<a<1 / 8$ then $D_{2}>0$, so the function is strictly convex if $0<a<1 / 8$. On the other hand, if $a=0$ or $a=1 / 8$, the Hessian positive semidefinite. Therefore, the function is convex if $0 \leq a \leq 1 / 8$.
(b) The Hessian of $g(x, y)=4 a x^{2}+8 x y+b y^{2}$ is

$$
\left(\begin{array}{cc}
8 a & 8 \\
8 & 2 b
\end{array}\right)
$$

Note that

$$
\begin{aligned}
& D_{1}=8 a \\
& D_{2}=\left|\begin{array}{cc}
8 a & 8 \\
8 & 2 b
\end{array}\right|=16(a b-4)
\end{aligned}
$$

The function is convex if $a>0$ and $a b \geq 4$. This is equivalent to $a>0$ and $b \geq 4 / a$.
If $a=0$, then $D_{1}=0, D_{2}=-64 \neq 0$. Hence, $\mathrm{H} h(x, y)$ is indefinite for every $(x, y) \in \mathbb{R}^{2}$ and the function is not convex in \mathbb{R}^{2}.
If $a<0$, then $D_{1}<0$, so $\mathrm{H} h(x, y)$ cannot be positive definite or positive semidefinite at any $(x, y) \in \mathbb{R}^{2}$ and the function is not convex in \mathbb{R}^{2}.

4-19. Discuss the concavity and convexity of the function $f(x, y)=-6 x^{2}+(2 a+4) x y-y^{2}+4 a y$ according to the values of a.

Solution: The Hessian of $f(x, y)=-6 x^{2}+(2 a+4) x y-y^{2}+4 a y$ is

$$
\left(\begin{array}{cc}
-12 & 2 a+4 \\
2 a+4 & -2
\end{array}\right)
$$

We have that

$$
\begin{aligned}
& D_{1}=-12<0 \\
& D_{2}=\left|\begin{array}{cc}
-12 & 2 a+4 \\
2 a+4 & -2
\end{array}\right|=8-4 a^{2}-16 a
\end{aligned}
$$

Since $D_{1}<0$ the function cannot be convex. It would be concave if $D_{2}=8-4 a^{2}-16 a \geq 0$. The roots of $8-4 a^{2}-16 a=0$ are $-2 \pm \sqrt{6}$. Thus, $D_{2} \geq 0$ is equivalent to $-2-\sqrt{6} \leq a \leq-2+\sqrt{6}$. Therefore f is concave if $a \in[-2-\sqrt{6},-2+\sqrt{6}]$.

4-20. Find the largest convex set of the plane where the function $f(x, y)=x^{2}-y^{2}-x y-x^{3}$ is concave.
Solution: The Hessian of $f(x, y)=x^{2}-y^{2}-x y-x^{3}$ is

$$
\left(\begin{array}{cc}
2-6 x & -1 \\
-1 & -2
\end{array}\right)
$$

We have that

$$
\begin{aligned}
& D_{1}=2-6 x \\
& D_{2}=12 x-5
\end{aligned}
$$

The condition $D_{2} \geq 0$ is equivalent to $x \geq 5 / 12$. Since $5 / 12>1 / 3$, the previous inequality also guarantees that $D_{1}<0$. Therefore, the largest set of the plane in which f is concave is the set $\left\{(x, y) \in \mathbb{R}^{2}: x \geq 5 / 12\right\}$.

