UNIVERSITY CARLOS III OF MADRID

EXERCISES

CHAPTER 3: Partial derivatives and differentiation

3-1. Find $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ for the following functions:
(a) $f(x, y)=x \cos x \sin y$.
(b) $f(x, y)=e^{x y^{2}}$.
(c) $f(x, y)=\left(x^{2}+y^{2}\right) \ln \left(x^{2}+y^{2}\right)$.

3-2. Determine the marginal-products for the following production function.

$$
F(x, y, z)=12 x^{1 / 2} y^{1 / 3} z^{1 / 4}
$$

3-3. Find the gradient of the following functions at the given point p
(a) $f(x, y)=\left(a^{2}-x^{2}-y^{2}\right)^{1 / 2}$ at $p=(a / 2, a / 2)$.
(b) $g(x, y)=\ln (1+x y)^{1 / 2}$ at $p=(1,1)$.
(c) $h(x, y)=e^{y} \cos (3 x+y)$ at $p=(2 \pi / 3,0)$.
$3-4$. Consider the function

$$
f(x, y)= \begin{cases}2 \frac{x^{2}+y^{2}}{|x|+|y|} \sin (x y) & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) Find the partial derivatives of f at the point $(0,0)$.
(b) Prove that f is continuous on all of \mathbb{R}^{2}. Hint: Use (proving it) that for $(x, y) \neq(0,0)$ we have that

$$
0 \leq \frac{\sqrt{x^{2}+y^{2}}}{|x|+|y|} \leq 1
$$

(c) Is f differentiable at $(0,0)$?
$3-5$. Consider the function

$$
f(x, y)= \begin{cases}\frac{x \sin y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) Study the continuity of f in \mathbb{R}^{2}.
(b) Compute the partial derivatives of f at the point $(0,0)$.
(c) At which points is f differentiable?

3-6. Consider the function

$$
f(x, y)= \begin{cases}2 \frac{x^{3} y}{x^{2}+2 y^{2}} \cos (x y) & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) Find the partial derivatives of f at the point $(0,0)$.
(b) Prove that f is continuous on all of \mathbb{R}^{2}. Hint: Note that for $(x, y) \neq(0,0)$ we have that

$$
\frac{1}{x^{2}+2 y^{2}} \leq \frac{1}{x^{2}+y^{2}}
$$

(c) Is f differentiable at $(0,0)$?

3-7. Compute the derivatives of the following functions at the given point p along the vector v
(a) $f(x, y)=x+2 x y-3 y^{2}, p=(1,2), v=(3,4)$.
(b) $g(x, y)=e^{x y}+y \tan ^{-1} x, p=(1,1), v=(1,-1)$.
(c) $h(x, y)=\left(x^{2}+y^{2}\right)^{1 / 2}, p=(0,5), v=(1,-1)$.

3-8. Let $B(x, y)=10 x-x^{2}-\frac{1}{2} x y+5 y$ be the profits of a firm. Last year the company sold $x=4$ units of good 1 and $y=2$ units of good 2. This year, the company can change slightly the amounts of the goods x and y it sells. If it wishes to increase its profit as much as possible, what should $\frac{\Delta x}{\Delta y}$ be?

3-9. Knowing that $\frac{\partial f}{\partial x}(2,3)=7$ and $\left.D_{\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right.}\right) f_{(2,3)}=3 \sqrt{5}$, find $\frac{\partial f}{\partial y}(2,3)$ and $D_{v} f_{(2,3)}$ with $v=\left(\frac{3}{5}, \frac{4}{5}\right)$.
3-10. Find the derivative of $f(x, y, z)=x y^{2}+z^{2} y$, along the vector $v=(1,-1,2)$ at the point $(1,1,0)$. Determine the direction which maximizes (resp. minimizes) the directional derivative at the point ($1,1,0$). What are the largest and smallest values of the directional derivative at that point?

3-11. Consider the function $f(x, y)=x^{2}+y^{2}+1$ y $g(x, y)=(x+y, a y)$. Determine:
(a) The value of a for which the function $f \circ g$ grows fastest in the direction of the vector $v=(5,7)$ at the point $p=(1,1)$.
(b) The equations of the tangent and normal lines to the curve $x y^{2}-2 x^{2}+y+5 x=6$ at the point $(4,2)$.

3-12. Find the Jacobian matrix of F in the following cases.
(a) $F(x, y, z)=\left(x y z, x^{2} z\right)$
(b) $F(x, y)=\left(e^{x y}, \ln x\right)$
(c) $F(x, y, z)=(\sin x y z, x z)$

3-13. Using the chain rule compute the derivatives

$$
\frac{\partial z}{\partial r} \quad \frac{\partial z}{\partial \theta}
$$

in the following cases.
(a) $z=x^{2}-2 x y+y^{2}, x=r+\theta, y=r-\theta$
(b) $z=\sqrt{25-5 x^{2}-5 y^{2}}, x=r \cos \theta, y=r \sin \theta$

3-14. Using the capital K at time t generates an instant profit of

$$
B(t)=5(1+t)^{1 / 2} K
$$

Suppose that capital evolves in time according to the equation $K(t)=120 e^{t / 4}$. Determine the rate of change of B.

3-15. Verify the chain rule for the function $h=\frac{x}{y}+\frac{y}{z}+\frac{z}{x}$ with $x=e^{t}, y=e^{t^{2}}$ and $z=e^{t^{3}}$.
3-16. Verify the chain rule for the composition $f \circ c$ in the following cases.
(a) $f(x, y)=x y, c(t)=\left(e^{t}, \cos t\right)$.
(b) $f(x, y)=e^{x y}, c(t)=\left(3 t^{2}, t^{3}\right)$.
$3-17$. Write the chain rule $h^{\prime}(x)$ in the following cases.
(a) $h(x)=f(x, u(x, a))$, where $a \in \mathbb{R}$ is a parameter.
(b) $h(x)=f(x, u(x), v(x))$.

3-18. Determine the points at which the tangent plane to the surface $z=e^{(x-1)^{2}+y^{2}}$ is horizontal. Determine the equation of the tangent plane at those points.

3-19. Consider the function $f(x, y)=\left(x e^{y}\right)^{3}$.
(a) Compute the equation of the tangent plane to the graph of $f(x, y)$ at the point $(2,0)$.
(b) Using the equation of the tangent plane, find an approximation to $\left(1,999 e^{0,002}\right)^{3}$.

3-20. Compute the tangent plane and normal line to the following level surfaces.
(a) $x^{2}+2 x y+2 y^{2}-z=0$ at the point $(1,1,5)$.
(b) $x^{2}+y^{2}-z=0$ at the point $(1,2,5)$.
(c) $\left(y-x^{2}\right)\left(y-2 x^{2}\right)-z=0$ at the point $(1,3,2)$.

3-21. Let $f, g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be two functions with continuous partial derivatives on \mathbb{R}^{2}.
(a) Show that if

$$
\frac{\partial f}{\partial x}(x, y)=\frac{\partial g}{\partial x}(x, y)
$$

at every point $(x, y) \in \mathbb{R}^{2}$, then $f-g$ depends only on y.
(b) Show that if

$$
\frac{\partial f}{\partial y}(x, y)=\frac{\partial g}{\partial y}(x, y)
$$

at every point $(x, y) \in \mathbb{R}^{2}$, then $f-g$ depends only on x.
(c) Show that if $\nabla(f-g)(x, y)=(0,0)$ at every point $(x, y) \in \mathbb{R}^{2}$, then $f-g$ is constant on \mathbb{R}^{2}.
(d) Find a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that

$$
\frac{\partial f}{\partial y}(x, y)=y x^{2}+x+2 y, \quad \frac{\partial f}{\partial x}(x, y)=y^{2} x+y, \quad f(0,0)=1
$$

Are there any other functions satisfying those equations?

