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EXERCISES (SOLUTIONS )

CHAPTER 3: Partial derivatives and differentiation

3-1. Find ∂f
∂x , ∂f

∂y for the following functions:

(a) f(x, y) = x cosx sin y.

(b) f(x, y) = exy
2

.
(c) f(x, y) = (x2 + y2) ln(x2 + y2).

Solution:
(a) The partial derivatives of the function f(x, y) = x(cosx)(sin y) are

∂f(x, y)

∂x
= cosx sin y − x sinx sin y,

∂f(x, y)

∂y
= x cosx cos y

(b) The partial derivatives of the function f(x, y) = exy
2

are

∂f(x, y)

∂x
= y2exy

2

,
∂f(x, y)

∂y
= 2xyexy

2

(c) The partial derivatives of the function f(x, y) = (x2 + y2) ln(x2 + y2) are

∂f(x, y)

∂x
= 2x ln

(
x2 + y2

)
+ 2x,

∂f(x, y)

∂y
= 2y ln

(
x2 + y2

)
+ 2y

3-2. Determine the marginal-products for the following production function.

F (x, y, z) = 12x1/2y1/3z1/4

Solution: We compute the partial derivatives with respect to each factor,

∂F

∂x
= 6x−1/2y1/3z1/4

∂F

∂y
= 4x1/2y−2/3z1/4

∂F

∂z
= 3x1/2y1/3z−3/4

3-3. Find the gradient of the following functions at the given point p

(a) f(x, y) =
(
a2 − x2 − y2

)1/2
at p = (a/2, a/2).

(b) g(x, y) = ln(1 + xy)1/2 at p = (1, 1).
(c) h(x, y) = ey cos(3x+ y) at p = (2π/3, 0).

Solution:

(a) ∇(a2 − x2 − y2)1/2 =

(
−x√

(a2−x2−y2)
, −y√

(a2−x2−y2)

)
so the gradient is(

−x√
(a2 − x2 − y2)

,
−y√

(a2 − x2 − y2)

)∣∣∣∣∣
x=y=a/2

=

(
−1√

2
,
−1√

2

)
(b) ∇(ln(1 + xy)1/2) = 1

2

(
y

1+xy ,
x

1+xy

)
so the gradient is

(
1
4 ,

1
4

)
.

(c)

∇ (ey cos(3x+ y))|x=2π/3,y=0 =

= (−3ey sin (3x+ y) , ey cos (3x+ y)− ey sin (3x+ y))|x=2π/3,y=0 = (0, 1)

3-4. Consider the function

f(x, y) =

{
2 x

2+y2

|x|+|y| sin(xy) if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

1
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(a) Find the partial derivatives of f at the point (0, 0).
(b) Prove that f is continuous on all of R2. Hint: Use (proving it) that for (x, y) 6= (0, 0) we have that

0 ≤
√
x2 + y2

|x|+ |y|
≤ 1

(c) Is f differentiable at (0, 0)?

Solution:
(a) The partial derivative with respect to x is

∂f

∂x
(0, 0) = lim

t→0

f(t, 0)− f(0, 0)

t
= 0

since sin(0) = 0. Likewise,

∂f

∂y
(0, 0) = lim

t→0

f(0, t)− f(0, 0)

t
= 0

so,

∇f(0, 0) = (0, 0)

(b) Note that for (x, y) 6= (0, 0), the function f is a quotient of continuous functions and, hence is continuous
for (x, y) 6= (0, 0).
Recall that the function f is continuous at the point (0, 0) if

lim
(x,y)→(0,0)

f(x, y) = f(0, 0)

We prove this next. First, since |x|, |y| ≥ 0 then

x2 + y2 ≤ |x|2 + |y|2 + 2|x||y|
= (|x|+ |y|)2

Hence,

0 ≤
√
x2 + y2

|x|+ |y|
≤ 1)

Given ε > 0, we take δ = ε/2. If 0 <
√
x2 + y2 < δ then

|f(x, y)| =2
x2 + y2

|x|+ |y|
| sin(xy)| (since | sin(xy)| ≤ 1)

≤2
x2 + y2

|x|+ |y|

=2
√
x2 + y2

√
x2 + y2

|x|+ |y|
(by the above observation)

≤2
√
x2 + y2| < 2δ = ε

(c) First, we note that f is differentiable in R2 \ {(0, 0)}, because the partial derivatives exist and are
continuous at every point of R2 \ {(0, 0)}. The function is differentiable at (0, 0) if

lim
(v1,v2)→(0,0)

f(v1, v2)− f(0, 0)−∇f(0, 0) · (v1, v2)√
v2

1 + v2
2

= 0

Note that f(0, 0) = 0, ∇f(0, 0) · (v1, v2) = 0. So, let us consider the quotient

f(v1, v2)√
v2

1 + v2
2

= 2
v2

1 + v2
2

(|v1|+ |v2|)
√
v2

1 + v2
2

sin(v1v2) = 2

√
v2

1 + v2
2

(|v1|+ |v2|)
sin(v1v2)

con (v1, v2) 6= (0, 0). The function f is differentiable at (0, 0) if

lim
(v1,v2)→(0,0)

√
v2

1 + v2
2

(|v1|+ |v2|)
sin(v1v2) = 0

By the observation made in the previous part, we have that

0 ≤
√
v2

1 + v2
2

(|v1|+ |v2|)
|sin(v1v2)| ≤ |sin(v1v2)|
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and since sin(v1v2) is continuous,

lim
(v1,v2)→(0,0)

sin(v1v2) = 0

Hence,

lim
(v1,v2)→(0,0)

√
v2

1 + v2
2

(|v1|+ |v2|)
sin(v1v2) = 0

and f is differentiable at (0, 0).

3-5. Consider the function

f(x, y) =

{ x sin y
x2+y2 if(x, y) 6= (0, 0)

0 if(x, y) = (0, 0)

(a) Study the continuity of f in R2.
(b) Compute the partial derivatives of f at the point (0, 0).
(c) At which points is f differentiable?

Solution:
(a) Note that

lim
t→0

f(t, 0) = lim
t→0

0

t2
= 0

On the other hand since,

lim
t→0

f(t, t) = lim
t→0

t sin t

2t2
= lim
t→0

sin t

2t
=

1

2

do not coincide, the limit

lim
(x,y)→(0,0)

f(x, y)

does not exist, and hence f is not continuous at (0, 0). The function is continuous at R2 \ {(0, 0)} since
it is a quotient of continuous functions and the denominator does not vanish there.

(b) The partial derivative with respect to x is

∂f

∂x
(0, 0) = lim

t→0

f(t, 0)− f(0, 0)

t
= lim
t→0

0

t3
= 0

since sin(0) = 0. Similarly,

∂f

∂y
(0, 0) = lim

t→0

f(0, t)− f(0, 0)

t
= lim
t→0

0

t3
= 0

(c) First, we note that f is differentiable on R2\{(0, 0)}, since the partial derivatives exist and are continuous
there. The function is not differentiable at (0, 0) because it is not continuous at that point.

3-6. Consider the function

f(x, y) =

{
2 x3y
x2+2y2 cos(xy) if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

(a) Find the partial derivatives of f at the point (0, 0).
(b) Prove that f is continuous on all of R2. Hint: Note that for (x, y) 6= (0, 0) we have that

1

x2 + 2y2
≤ 1

x2 + y2

(c) Is f differentiable at (0, 0)?

Solution:
(a) The partial derivatives are

∂f

∂x
(0, 0) = lim

t→0

f(t, 0)− f(0, 0)

t
= lim
t→0

0

t3
= 0

and
∂f

∂y
(0, 0) = lim

t→0

f(0, t)− f(0, 0)

t
= lim
t→0

0

2t3
= 0
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(b) The function is continuous on R2 \ {(0, 0)}, since it is a quotient of continuous functions and the denom-

inator does not vanish. Let us study the continuity at the point (0, 0). Let ε > 0. Take δ =
√
ε/2. If

0 <
√
x2 + y2 < δ then,∣∣∣∣2 x3y

x2 + 2y2
cos(xy)

∣∣∣∣ =2
x2|x||y|
x2 + 2y2

| cos(xy)|

≤2|x||y| (since x2 ≤ x2 + 2y2 y | cos(xy)| ≤ 1

=2
√
x2
√
y2 ≤ 2

(√
x2 + y2

)(√
x2 + y2

)
< 2δ2 = ε

(c) The function is differentiable at (0, 0) if

lim
(x,y)→(0,0)

f(x, y)− f(0, 0)−∇f(0, 0) · (x, y)√
x2 + y2

= 0

Since, f(0, 0) = 0, ∇f(0, 0) · (x, y) = 0, the function is differentiable at (0, 0) if

lim
(x,y)→(0,0)

x3y

(x2 + 2y2)
√
x2 + y2

cos(xy) = 0

Given ε > 0, we take δ = ε. If 0 <
√
x2 + y2 < δ then,∣∣∣∣∣ x3y

(x2 + 2y2)
√
x2 + y2

cos(xy)

∣∣∣∣∣ ≤
∣∣∣∣∣ x3y

(x2 + 2y2)
√
x2 + y2

∣∣∣∣∣
=

x2|x||y|
(x2 + 2y2)

√
x2 + y2

≤ |x||y|√
x2 + y2

=

√
x2
√
y2√

x2 + y2

≤
√
y2 ≤

√
x2 + y2 < δ = ε

so f is differentiable at (0, 0).

3-7. Compute the derivatives of the following functions at the given point p along the vector v
(a) f(x, y) = x+ 2xy − 3y2, p = (1, 2), v = (3, 4).
(b) g(x, y) = exy + y tan−1 x, p = (1, 1), v = (1,−1).

(c) h(x, y) =
(
x2 + y2

)1/2
, p = (0, 5), v = (1,−1).

Solution:
(a) ∇(x+ 2xy − 3y2)

∣∣
x=1,y=2

= (1 + 2y, 2x− 6y)|x=1,y=2 = (5,−10). So, the derivative along the vector

(3, 4) is

(5,−10) · (3, 4) = −25

(b) ∇(exy + y arctanx)|x=1,y=1 =
(
yexy + y

1+x2 , xe
xy + arctanx

)∣∣∣
x=1,y=1

= (e + 1
2 , e + arctan 1) = (e +

1
2 , e+ π

4 ). So, the derivative along the vector (1,−1) is

(e+
1

2
, e+

π

4
) · (1,−1) =

1

2
− π

4

(c) ∇((x2 + y2)1/2)
∣∣
x=0,y=5

=

(
x√

(x2+y2)
, y√

(x2+y2)

)∣∣∣∣
x=0,y=5

= (0, 1). So, the derivative along the vector

(1,−1) is

(0, 1) · (1,−1) = −1

3-8. Let B(x, y) = 10x− x2 − 1
2xy + 5y be the profits of a firm. Last year the company sold x = 4 units of good 1

and y = 2 units of good 2. This year, the company can change slightly the amounts of the goods x and y it
sells. If it wishes to increase its profit as much as possible, what should ∆x

∆y be?

Solution:

∇(10x− x2 − xy

2
+ 5y)

∣∣∣
x=4,y=2

=
(

10− 2x− y

2
,−x

2
+ 5
)∣∣∣
x=4,y=2

= (1, 3)
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Since the gradient points in the direction of maximum growth of the function, if there is an increase (4x,4y),
for the function to increase the most, we must have that (4x,4y) = k(1, 3). From here we obtain that4x = k
y 4y = 3k. Hence, 4x/4y = 1/3.

3-9. Knowing that ∂f
∂x (2, 3) = 7 and D( 1√

5
, 2√

5
)f(2,3) = 3

√
5, find ∂f

∂y (2, 3) and Dvf(2,3) with v = ( 3
5 ,

4
5 ).

Solution: We know that

D( 1√
5
, 2√

5
)f(2, 3) =

(
∂f

∂x
(2, 3),

∂f

∂y
(2, 3)

)
· ( 1√

5
,

2√
5

) = 3
√

5

and also
∂f

∂x
(2, 3) = 7

Letting

z =
∂f

∂y
(2, 3)

we have that

(7, z) · ( 1√
5
,

2√
5

) = 3
√

5

But this is equivalent to

7
√

5

5
+

2z
√

5

5
= 3
√

5

And, therefore
∂f

∂y
(2, 3) = 4

We may compute now

D( 3
5 ,

4
5 )f(2, 3) =

(
∂f

∂x
(2, 3),

∂f

∂y
(2, 3)

)
·
(

3

5
,

4

5

)
= (7, 4) ·

(
3

5
,

4

5

)
=

37

5

3-10. Find the derivative of f(x, y, z) = xy2 + z2y, along the vector v = (1,−1, 2) at the point (1, 1, 0). Determine
the direction which maximizes (resp. minimizes) the directional derivative at the point (1, 1, 0). What are the
largest and smallest values of the directional derivative at that point?

Solution: The gradient of the function f(x, y, z) = xy2 + z2y at the point (1, 1, 0) is

∇f(1, 1, 0) = ∇(xy2 + z2y)
∣∣
x=1,y=1,z=0

=
(
y2, 2xy + z2, 2zy

)∣∣
x=1,y=1,z=0

= (1, 2, 0)

The derivative along v is

Dvf(1, 1, 0) = ∇f(1, 1, 0) · v = (1, 2, 0) · (1,−1, 2) = −1

The direction which maximizes the directional derivative is

∇f(1, 1, 0)

‖∇f(1, 1, 0)‖
=

1√
5

(1, 2, 0)

and the maximum value of the directional derivative is ‖∇f(1, 1, 0)‖ =
√

5.
Likewise, the direction which minimizes the directional derivative is

− ∇f(1, 1, 0)

‖∇f(1, 1, 0)‖
=

1√
5

(−1,−2, 0)

and the minimum value of the directional derivative is −‖∇f(1, 1, 0)‖ = −
√

5.

3-11. Consider the function f(x, y) = x2 + y2 + 1 y g(x, y) = (x+ y, ay). Determine:
(a) The value of a for which the function f ◦ g grows fastest in the direction of the vector v = (5, 7) at the

point p = (1, 1).
(b) The equations of the tangent and normal lines to the curve xy2 − 2x2 + y + 5x = 6 at the point (4, 2).

Solution: Consider the functions f(x, y) = x2 + y2 + 1 y g(x, y) = (x+ y, ay)
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(a) Their composition is f(g(x, y)) = f(x+ y, ay) = (x+ y)
2

+ a2y2 + 1 and the gradient at the point (1, 1)
is

∇(f(g(1, 1)) =
(
2x+ 2y, 2x+ 2y + 2a2y

)∣∣
x=1,y=1

= (4, 4 + 2a2)

If we want that direction of the vector v = (5, 7) is the direction of maximum growth of f(g(x, y)) at the
point (1, 1) , we must have that v and ∇(f(g(x, y))(1, 1) are parallel. That is,

4 + 2a2

4
=

7

5

whose solution is

a = ± 2√
5

(b) Note first that the point (4, 2) satisfies the equation xy2 − 2x2 + y + 5x = 6. Now, the gradient of the
function g(x, y) = xy2 − 2x2 + y + 5x = 6 at the point (4, 2) is

∇g(4, 2) = (y2 − 4x+ 5, 2xy + 1)
∣∣
x=4
y=2

= (−7, 17)

Thus, the equation of the tangent line is

(−7, 17) · (x− 4, y − 2) = 0

and the parametric equations of the normal line are

(x(t), y(t)) = (4, 2) + t(−7, 17)

3-12. Find the Jacobian matrix of F in the following cases.
(a) F (x, y, z) = (xyz, x2z)
(b) F (x, y) = (exy, lnx)
(c) F (x, y, z) = (sinxyz, xz)

Solution:
(a) The Jacobian matrix of F is

DF (x, y, z) =

(
yz xz xy
2xz 0 x2

)
(b) The Jacobian matrix of

DF (x, y, z) =

(
yexy xexy

1/x 0

)
(c) The Jacobian matrix of

DF (x, y, z) =

(
yz cosxyz xz cosxyz xy cosxyz

z 0 x

)

3-13. Using the chain rule compute the derivatives

∂z

∂r

∂z

∂θ

in the following cases.
(a) z = x2 − 2xy + y2, x = r + θ, y = r − θ
(b) z =

√
25− 5x2 − 5y2, x = r cos θ, y = r sin θ

Solution:
(a)

∂z

∂r
=

∂z

∂x

∂x

∂r
+
∂z

∂y

∂y

∂r
= 2x− 2y − 2x+ 2y = 0

∂z

∂θ
=

∂z

∂x

∂x

∂θ
+
∂z

∂y

∂y

∂θ

= 2x− 2y − (−2x+ 2y) = 4(x− y) = 8θ
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(b)

∂z

∂r
=

∂z

∂x

∂x

∂r
+
∂z

∂y

∂y

∂r

= − 10x

2
√

25− 5x2 − 5y2
cos θ − 10y

2
√

25− 5x2 − 5y2
sin θ

= − 5r cos2 θ√
25− 5r2

− 5r sin2 θ√
25− 5r2

= − 5r√
25− 5r2

∂z

∂θ
=

∂z

∂x

∂x

∂θ
+
∂z

∂y

∂y

∂θ

= − 10x√
25− 5x2 − 5y2

+
10y√

25− 5x2 − 5y2

= − 10x

2
√

25− 5x2 − 5y2
(−r sin θ)− 10y

2
√

25− 5x2 − 5y2
(r cos θ)

=
5r2 cos θ sin θ√

25− 5r2
− 5r2 cos θ sin θ√

25− 5r2
= 0

3-14. Using the capital K at time t generates an instant profit of

B(t) = 5(1 + t)1/2K

Suppose that capital evolves in time according to the equation K(t) = 120et/4. Determine the rate of change
of B.

Solution:
Since

dK

dt
= 30et/4

we see that

d

dt
B = =

5

2
(1 + t)−1/2K + 5(1 + t)1/2 dK

dt

= 300(1 + t)−1/2et/4 + 150(1 + t)1/2et/4

3-15. Verify the chain rule for the function h = x
y + y

z + z
x with x = et, y = et

2

and z = et
3

.

3-16. Verify the chain rule for the composition f ◦ c in the following cases.
(a) f(x, y) = xy, c(t) = (et, cos t).
(b) f(x, y) = exy, c(t) = (3t2, t3).

Solution:
(a) The functions are f(x, y) = xy and c(t) = (x(t), y(t)) = (et, cos t). Therefore, f(x(t), y(t)) = f(et, cos t) =

et cos t and
d

dt
f(x(t), y(t)) = et cos t− et sin t

Now, we compute

∇f(c(t)) · dc
dt

On the one hand,

∇f(x, y) = (y, x)

and
dc

dt
= (et,− sin t)

Therefore,

∇f(c(t)) · dc
dt

= y(t)et − x(t) sin t

which coincides with the computation above.
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(b) The functions are f(x, y) = exy and c(t) = (x(t), y(t)) = (3t2, t3). Therefore, f(x(t), y(t)) = f(3t2, t3) =

e3t5 and
d

dt
f(x(t), y(t)) = 15t4e3t5

Now, we compute

∇f(c(t)) · dc
dt

On the one hand,

∇f(x, y) = (yexy, xexy)

and
dc

dt
= (6t, 3t2)

Therefore,

∇f(c(t)) · dc
dt

=
(
6yexyt+ 3xexyt2

)∣∣
x=3t2,y=t3

= 15t4e3t5

3-17. Write the chain rule h′(x) in the following cases.
(a) h(x) = f(x, u(x, a)), where a ∈ R is a parameter.
(b) h(x) = f(x, u(x), v(x)).

Solution:
(a)

h′(x) =
∂f (x, u(x, a))

∂x
+
∂f (x, u(x, a))

∂y

∂u(x, a)

∂x

(b)

h′(x) =
∂f(x, u(x), v(x))

∂x
+
∂f(x, u(x), v(x))

∂y
u′(x) +

∂f(x, u(x), v(x))

∂z
v′(x)

3-18. Determine the points at which the tangent plane to the surface z = e(x−1)2+y2 is horizontal. Determine the
equation of the tangent plane at those points.

Solution: Consider the function of 3 variables

g(x, y, z) = e(x−1)2+y2 − z

We are asked to compute the tangent plane to the level surface

A = {(x, y, z) ∈ R3 : g(x, y, z) = 0}

at the point (x, y, z) where this tangent plane is horizontal. At that point we must have that

∇g(x, y, z) = (0, 0,−1)

Since,

∇g(x, y, z) =
(

2(x− 1)e(x−1)2+y2 , 2ye(x−1)2+y2 ,−1
)

we must have that x = 1, y = 0. The z coordinate is

z = e(x−1)2+y2
∣∣∣
x=1,y=0

= 1

And the tangent is horizontal at the point (1, 0, 1). The equation of the tangent plane is

z = 1

3-19. Consider the function f(x, y) = (xey)3.
(a) Compute the equation of the tangent plane to the graph of f(x, y) at the point (2, 0).
(b) Using the equation of the tangent plane, find an approximation to (1, 999e0,002)3.

Solution:
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(a) We are asked to compute the tangent plane to the graph of f at the point (2, 0, f(2, 0)) = (2, 0, 8).
Consider the function of 3 variables

g(x, y, z) = x3e3y − z
The graph of f is the level surface of g,

A = {(x, y, z) ∈ R3 : g(x, y, z) = 0}
Therefore, it is enough to compute the tangent plane to the level surface A at the point (2, 0, 8). Since,

∇g(2, 0, 8) = (3x2ey, 3x3ey,−1)
∣∣
x=2,y=0,z=8

= (12, 24,−1)

the equation of the tangent plane is

(12, 24,−1) · (x− 2, y, z − 8) = 0

that is,

12x+ 24y − z = 16

(b) We are asked to estimate the function f(x, y) = x3e3y at the point (1′999, 0′002). Since, f is differentiable
and that point is very close to (2, 0), we use Taylor’s first order approximation around the point (2, 0),

z = 12x+ 24y − 16

and we obtain that

f(1′999, 0′002) ≈ (12x+ 24y − 16)|x=1′999,y=0′002 = 8′036

3-20. Compute the tangent plane and normal line to the following level surfaces.
(a) x2 + 2xy + 2y2 − z = 0 at the point (1, 1, 5).
(b) x2 + y2 − z = 0 at the point (1, 2, 5).
(c) (y − x2)(y − 2x2)− z = 0 at the point (1, 3, 2).

Solution:
(a) We compute the gradient

∇(x2 + 2xy + 2y2 − z)
∣∣
(x,y,z)=(1,1,5)

= (2x+ 2y, 2x+ 4y,−1)|(x,y,z)=(1,1,5) = (4, 6,−1)

Thus, the equation of the tangent plane is

(4, 6,−1) · (x− 1, y − 1, z − 5) = 0

that is,

4x+ 6y − z = 5

(b) We compute the gradient

∇(x2 + y2 − z)
∣∣
(x,y,z)=(1,2,5)

= (2x, 2y,−1)|(x,y,z)=(1,2,5) = (2, 4,−1)

Thus, the equation of the tangent plane is

(2, 4,−1) · (x− 1, y − 2, z − 5) = 0

that is,

2x+ 4y − z = 5

(c) We compute the gradient

∇((y − x2)(y − 2x2)− z)
∣∣
(x,y,z)=(1,3,2)

= (−2x(y − 2x2)− 4x(y − x2), 2y − 3x2,−1)
∣∣
(x,y,z)=(1,3,2)

= (−10, 3,−1)

Thus, the equation of the tangent plane is

(−10, 3,−1) · (x− 1, y − 3, z − 2) = 0

that is,

10x− 3y + z = 3

3-21. Let f, g : R2 → R be two functions with continuous partial derivatives on R2.
(a) Show that if

∂f

∂x
(x, y) =

∂g

∂x
(x, y)

at every point (x, y) ∈ R2, then f − g depends only on y.
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(b) Show that if
∂f

∂y
(x, y) =

∂g

∂y
(x, y)

at every point (x, y) ∈ R2, then f − g depends only on x.
(c) Show that if ∇(f − g)(x, y) = (0, 0) at every point (x, y) ∈ R2, then f − g is constant on R2.
(d) Find a function f : R2 → R such that

∂f

∂y
(x, y) = yx2 + x+ 2y,

∂f

∂x
(x, y) = y2x+ y, f(0, 0) = 1

Are there any other functions satisfying those equations?

Solution: The functions f and g are of class C1.
(a) Let (a, b), (x, b) ∈ R2. Let h(x, y) = f(x, y)− g(x, y). By the Mean Value Theorem,

h(x, b)− h(a, b) = ∇h(c) · (x− a, 0)

for some point c = (c1, c2) = t(x, b) + (1− t)(a, b) = (tx+ (1− t)a, b) with 0 < t < 1. Since,

∂h

∂x
(c) = 0

we have that h(x, b)− h(a, b) = 0. That is, h(x, b) = h(a, b) for every x ∈ R and the function h does not
depend on y

(b) Is very similar to the previous case.
(c) At each point of R2 we have that

∂(f − g)

∂x
=
∂(f − g)

∂y
= 0

so f − g does not depend neither on x nor on y.
(d) We know that ∂f

∂y (x, y) = yx2 + x+ 2y. Integrating with respect to y,

f(x, y) =

∫
(yx2 + x+ 2y)dy =

1

2
y2x2 + xy + y2 + C(x)

where C(x) is a function that depends only on x. The other condition is ∂f
∂x (x, y) = y2x+ y. We try this

with the function that we have obtained,

∂

∂x

(
1

2
y2x2 + xy + y2 + C(x)

)
= y2x+ y + C ′(x)

so, C ′(x) = 0 and C(x) = c, a constant. To find c we use the condition f(0, 0) = 1. Thus,

f(x, y) =
1

2
y2x2 + xy + y2 + c

f(0, 0) = c and f(0, 0) = 1. Hence c = 1

The function f(x, y) = 1
2y

2x2 + xy+ y2 + 1 satisfies the above conditions. If there were another function g of

class C1 satisfying the same conditions, we would have that ∇(f −g)(x, y) = (0, 0) at every point (x, y) ∈ R2.
By part (c) there is a constant A ∈ R such that

(f − g)(x, y) = A

for every (x, y) ∈ R2. But, since f(0, 0) = 1 = g(0, 0), we have that A = 0 and the functions coincide.


