UNIVERSITY CARLOS III OF MADRID

EXERCISES (SOLUTIONS)

CHAPTER 3: Partial derivatives and differentiation

3-1. Find $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ for the following functions:
(a) $f(x, y)=x \cos x \sin y$.
(b) $f(x, y)=e^{x y^{2}}$.
(c) $f(x, y)=\left(x^{2}+y^{2}\right) \ln \left(x^{2}+y^{2}\right)$.

Solution:

(a) The partial derivatives of the function $f(x, y)=x(\cos x)(\sin y)$ are

$$
\frac{\partial f(x, y)}{\partial x}=\cos x \sin y-x \sin x \sin y, \quad \frac{\partial f(x, y)}{\partial y}=x \cos x \cos y
$$

(b) The partial derivatives of the function $f(x, y)=e^{x y^{2}}$ are

$$
\frac{\partial f(x, y)}{\partial x}=y^{2} e^{x y^{2}}, \quad \frac{\partial f(x, y)}{\partial y}=2 x y e^{x y^{2}}
$$

(c) The partial derivatives of the function $f(x, y)=\left(x^{2}+y^{2}\right) \ln \left(x^{2}+y^{2}\right)$ are

$$
\frac{\partial f(x, y)}{\partial x}=2 x \ln \left(x^{2}+y^{2}\right)+2 x, \quad \frac{\partial f(x, y)}{\partial y}=2 y \ln \left(x^{2}+y^{2}\right)+2 y
$$

3-2. Determine the marginal-products for the following production function.

$$
F(x, y, z)=12 x^{1 / 2} y^{1 / 3} z^{1 / 4}
$$

Solution: We compute the partial derivatives with respect to each factor,

$$
\begin{aligned}
& \frac{\partial F}{\partial x}=6 x^{-1 / 2} y^{1 / 3} z^{1 / 4} \\
& \frac{\partial F}{\partial y}=4 x^{1 / 2} y^{-2 / 3} z^{1 / 4} \\
& \frac{\partial F}{\partial z}=3 x^{1 / 2} y^{1 / 3} z^{-3 / 4}
\end{aligned}
$$

3-3. Find the gradient of the following functions at the given point p
(a) $f(x, y)=\left(a^{2}-x^{2}-y^{2}\right)^{1 / 2}$ at $p=(a / 2, a / 2)$.
(b) $g(x, y)=\ln (1+x y)^{1 / 2}$ at $p=(1,1)$.
(c) $h(x, y)=e^{y} \cos (3 x+y)$ at $p=(2 \pi / 3,0)$.

Solution:

(a) $\nabla\left(a^{2}-x^{2}-y^{2}\right)^{1 / 2}=\left(\frac{-x}{\sqrt{\left(a^{2}-x^{2}-y^{2}\right)}}, \frac{-y}{\sqrt{\left(a^{2}-x^{2}-y^{2}\right)}}\right)$ so the gradient is

$$
\left.\left(\frac{-x}{\sqrt{\left(a^{2}-x^{2}-y^{2}\right)}}, \frac{-y}{\sqrt{\left(a^{2}-x^{2}-y^{2}\right)}}\right)\right|_{x=y=a / 2}=\left(\frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)
$$

(b) $\nabla\left(\ln (1+x y)^{1 / 2}\right)=\frac{1}{2}\left(\frac{y}{1+x y}, \frac{x}{1+x y}\right)$ so the gradient is $\left(\frac{1}{4}, \frac{1}{4}\right)$.
(c)

$$
\begin{aligned}
& \left.\nabla\left(e^{y} \cos (3 x+y)\right)\right|_{x=2 \pi / 3, y=0}= \\
& =\left.\left(-3 e^{y} \sin (3 x+y), e^{y} \cos (3 x+y)-e^{y} \sin (3 x+y)\right)\right|_{x=2 \pi / 3, y=0}=(0,1)
\end{aligned}
$$

3-4. Consider the function

$$
f(x, y)= \begin{cases}2 \frac{x^{2}+y^{2}}{|x|+|y|} \sin (x y) & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) Find the partial derivatives of f at the point $(0,0)$.
(b) Prove that f is continuous on all of \mathbb{R}^{2}. Hint: Use (proving it) that for $(x, y) \neq(0,0)$ we have that

$$
0 \leq \frac{\sqrt{x^{2}+y^{2}}}{|x|+|y|} \leq 1
$$

(c) Is f differentiable at $(0,0)$?

Solution:

(a) The partial derivative with respect to x is

$$
\frac{\partial f}{\partial x}(0,0)=\lim _{t \rightarrow 0} \frac{f(t, 0)-f(0,0)}{t}=0
$$

since $\sin (0)=0$. Likewise,

$$
\frac{\partial f}{\partial y}(0,0)=\lim _{t \rightarrow 0} \frac{f(0, t)-f(0,0)}{t}=0
$$

so,

$$
\nabla f(0,0)=(0,0)
$$

(b) Note that for $(x, y) \neq(0,0)$, the function f is a quotient of continuous functions and, hence is continuous for $(x, y) \neq(0,0)$.
Recall that the function f is continuous at the point $(0,0)$ if

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y)=f(0,0)
$$

We prove this next. First, since $|x|,|y| \geq 0$ then

$$
\begin{aligned}
x^{2}+y^{2} & \leq|x|^{2}+|y|^{2}+2|x||y| \\
& =(|x|+|y|)^{2}
\end{aligned}
$$

Hence,

$$
\left.0 \leq \frac{\sqrt{x^{2}+y^{2}}}{|x|+|y|} \leq 1\right)
$$

Given $\varepsilon>0$, we take $\delta=\varepsilon / 2$. If $0<\sqrt{x^{2}+y^{2}}<\delta$ then

$$
\begin{aligned}
|f(x, y)| & =2 \frac{x^{2}+y^{2}}{|x|+|y|}|\sin (x y)| \quad(\text { since }|\sin (x y)| \leq 1) \\
& \leq 2 \frac{x^{2}+y^{2}}{|x|+|y|} \\
& =2 \sqrt{x^{2}+y^{2}} \frac{\sqrt{x^{2}+y^{2}}}{|x|+|y|} \quad \text { (by the above observation) } \\
& \leq 2 \sqrt{x^{2}+y^{2}} \mid<2 \delta=\varepsilon
\end{aligned}
$$

(c) First, we note that f is differentiable in $\mathbb{R}^{2} \backslash\{(0,0)\}$, because the partial derivatives exist and are continuous at every point of $\mathbb{R}^{2} \backslash\{(0,0)\}$. The function is differentiable at $(0,0)$ if

$$
\lim _{\left(v_{1}, v_{2}\right) \rightarrow(0,0)} \frac{f\left(v_{1}, v_{2}\right)-f(0,0)-\nabla f(0,0) \cdot\left(v_{1}, v_{2}\right)}{\sqrt{v_{1}^{2}+v_{2}^{2}}}=0
$$

Note that $f(0,0)=0, \nabla f(0,0) \cdot\left(v_{1}, v_{2}\right)=0$. So, let us consider the quotient

$$
\frac{f\left(v_{1}, v_{2}\right)}{\sqrt{v_{1}^{2}+v_{2}^{2}}}=2 \frac{v_{1}^{2}+v_{2}^{2}}{\left(\left|v_{1}\right|+\left|v_{2}\right|\right) \sqrt{v_{1}^{2}+v_{2}^{2}}} \sin \left(v_{1} v_{2}\right)=2 \frac{\sqrt{v_{1}^{2}+v_{2}^{2}}}{\left(\left|v_{1}\right|+\left|v_{2}\right|\right)} \sin \left(v_{1} v_{2}\right)
$$

con $\left(v_{1}, v_{2}\right) \neq(0,0)$. The function f is differentiable at $(0,0)$ if

$$
\lim _{\left(v_{1}, v_{2}\right) \rightarrow(0,0)} \frac{\sqrt{v_{1}^{2}+v_{2}^{2}}}{\left(\left|v_{1}\right|+\left|v_{2}\right|\right)} \sin \left(v_{1} v_{2}\right)=0
$$

By the observation made in the previous part, we have that

$$
0 \leq \frac{\sqrt{v_{1}^{2}+v_{2}^{2}}}{\left(\left|v_{1}\right|+\left|v_{2}\right|\right)}\left|\sin \left(v_{1} v_{2}\right)\right| \leq\left|\sin \left(v_{1} v_{2}\right)\right|
$$

and since $\sin \left(v_{1} v_{2}\right)$ is continuous,

$$
\lim _{\left(v_{1}, v_{2}\right) \rightarrow(0,0)} \sin \left(v_{1} v_{2}\right)=0
$$

Hence,

$$
\lim _{\left(v_{1}, v_{2}\right) \rightarrow(0,0)} \frac{\sqrt{v_{1}^{2}+v_{2}^{2}}}{\left(\left|v_{1}\right|+\left|v_{2}\right|\right)} \sin \left(v_{1} v_{2}\right)=0
$$

and f is differentiable at $(0,0)$.
3-5. Consider the function

$$
f(x, y)= \begin{cases}\frac{x \sin y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) Study the continuity of f in \mathbb{R}^{2}.
(b) Compute the partial derivatives of f at the point $(0,0)$.
(c) At which points is f differentiable?

Solution:

(a) Note that

$$
\lim _{t \rightarrow 0} f(t, 0)=\lim _{t \rightarrow 0} \frac{0}{t^{2}}=0
$$

On the other hand since,

$$
\lim _{t \rightarrow 0} f(t, t)=\lim _{t \rightarrow 0} \frac{t \sin t}{2 t^{2}}=\lim _{t \rightarrow 0} \frac{\sin t}{2 t}=\frac{1}{2}
$$

do not coincide, the limit

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y)
$$

does not exist, and hence f is not continuous at $(0,0)$. The function is continuous at $\mathbb{R}^{2} \backslash\{(0,0)\}$ since it is a quotient of continuous functions and the denominator does not vanish there.
(b) The partial derivative with respect to x is

$$
\frac{\partial f}{\partial x}(0,0)=\lim _{t \rightarrow 0} \frac{f(t, 0)-f(0,0)}{t}=\lim _{t \rightarrow 0} \frac{0}{t^{3}}=0
$$

since $\sin (0)=0$. Similarly,

$$
\frac{\partial f}{\partial y}(0,0)=\lim _{t \rightarrow 0} \frac{f(0, t)-f(0,0)}{t}=\lim _{t \rightarrow 0} \frac{0}{t^{3}}=0
$$

(c) First, we note that f is differentiable on $\mathbb{R}^{2} \backslash\{(0,0)\}$, since the partial derivatives exist and are continuous there. The function is not differentiable at $(0,0)$ because it is not continuous at that point.

3-6. Consider the function

$$
f(x, y)= \begin{cases}2 \frac{x^{3} y}{x^{2}+2 y^{2}} \cos (x y) & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) Find the partial derivatives of f at the point $(0,0)$.
(b) Prove that f is continuous on all of \mathbb{R}^{2}. Hint: Note that for $(x, y) \neq(0,0)$ we have that

$$
\frac{1}{x^{2}+2 y^{2}} \leq \frac{1}{x^{2}+y^{2}}
$$

(c) Is f differentiable at $(0,0)$?

Solution:

(a) The partial derivatives are

$$
\frac{\partial f}{\partial x}(0,0)=\lim _{t \rightarrow 0} \frac{f(t, 0)-f(0,0)}{t}=\lim _{t \rightarrow 0} \frac{0}{t^{3}}=0
$$

and

$$
\frac{\partial f}{\partial y}(0,0)=\lim _{t \rightarrow 0} \frac{f(0, t)-f(0,0)}{t}=\lim _{t \rightarrow 0} \frac{0}{2 t^{3}}=0
$$

(b) The function is continuous on $\mathbb{R}^{2} \backslash\{(0,0)\}$, since it is a quotient of continuous functions and the denominator does not vanish. Let us study the continuity at the point $(0,0)$. Let $\varepsilon>0$. Take $\delta=\sqrt{\varepsilon / 2}$. If $0<\sqrt{x^{2}+y^{2}}<\delta$ then,

$$
\begin{aligned}
\left|2 \frac{x^{3} y}{x^{2}+2 y^{2}} \cos (x y)\right| & =2 \frac{x^{2}|x||y|}{x^{2}+2 y^{2}}|\cos (x y)| \\
& \leq 2|x||y| \quad\left(\text { since } x^{2} \leq x^{2}+2 y^{2} \mathrm{y}|\cos (x y)| \leq 1\right. \\
& =2 \sqrt{x^{2}} \sqrt{y^{2}} \leq 2\left(\sqrt{x^{2}+y^{2}}\right)\left(\sqrt{x^{2}+y^{2}}\right)<2 \delta^{2}=\varepsilon
\end{aligned}
$$

(c) The function is differentiable at $(0,0)$ if

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{f(x, y)-f(0,0)-\nabla f(0,0) \cdot(x, y)}{\sqrt{x^{2}+y^{2}}}=0
$$

Since, $f(0,0)=0, \nabla f(0,0) \cdot(x, y)=0$, the function is differentiable at $(0,0)$ if

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3} y}{\left(x^{2}+2 y^{2}\right) \sqrt{x^{2}+y^{2}}} \cos (x y)=0
$$

Given $\varepsilon>0$, we take $\delta=\varepsilon$. If $0<\sqrt{x^{2}+y^{2}}<\delta$ then,

$$
\begin{aligned}
\left|\frac{x^{3} y}{\left(x^{2}+2 y^{2}\right) \sqrt{x^{2}+y^{2}}} \cos (x y)\right| & \leq\left|\frac{x^{3} y}{\left(x^{2}+2 y^{2}\right) \sqrt{x^{2}+y^{2}}}\right| \\
& =\frac{x^{2}|x||y|}{\left(x^{2}+2 y^{2}\right) \sqrt{x^{2}+y^{2}}} \\
& \leq \frac{|x||y|}{\sqrt{x^{2}+y^{2}}}=\frac{\sqrt{x^{2}} \sqrt{y^{2}}}{\sqrt{x^{2}+y^{2}}} \\
& \leq \sqrt{y^{2}} \leq \sqrt{x^{2}+y^{2}}<\delta=\varepsilon
\end{aligned}
$$

so f is differentiable at $(0,0)$.
3-7. Compute the derivatives of the following functions at the given point p along the vector v
(a) $f(x, y)=x+2 x y-3 y^{2}, p=(1,2), v=(3,4)$.
(b) $g(x, y)=e^{x y}+y \tan ^{-1} x, p=(1,1), v=(1,-1)$.
(c) $h(x, y)=\left(x^{2}+y^{2}\right)^{1 / 2}, p=(0,5), v=(1,-1)$.

Solution:

(a) $\left.\nabla\left(x+2 x y-3 y^{2}\right)\right|_{x=1, y=2}=\left.(1+2 y, 2 x-6 y)\right|_{x=1, y=2}=(5,-10)$. So, the derivative along the vector $(3,4)$ is

$$
(5,-10) \cdot(3,4)=-25
$$

(b) $\left.\nabla\left(e^{x y}+y \arctan x\right)\right|_{x=1, y=1}=\left.\left(y e^{x y}+\frac{y}{1+x^{2}}, x e^{x y}+\arctan x\right)\right|_{x=1, y=1}=\left(e+\frac{1}{2}, e+\arctan 1\right)=(e+$ $\left.\frac{1}{2}, e+\frac{\pi}{4}\right)$. So, the derivative along the vector $(1,-1)$ is

$$
\left(e+\frac{1}{2}, e+\frac{\pi}{4}\right) \cdot(1,-1)=\frac{1}{2}-\frac{\pi}{4}
$$

(c) $\left.\nabla\left(\left(x^{2}+y^{2}\right)^{1 / 2}\right)\right|_{x=0, y=5}=\left.\left(\frac{x}{\sqrt{\left(x^{2}+y^{2}\right)}}, \frac{y}{\sqrt{\left(x^{2}+y^{2}\right)}}\right)\right|_{x=0, y=5}=(0,1)$. So, the derivative along the vector $(1,-1)$ is

$$
(0,1) \cdot(1,-1)=-1
$$

3-8. Let $B(x, y)=10 x-x^{2}-\frac{1}{2} x y+5 y$ be the profits of a firm. Last year the company sold $x=4$ units of good 1 and $y=2$ units of good 2. This year, the company can change slightly the amounts of the goods x and y it sells. If it wishes to increase its profit as much as possible, what should $\frac{\Delta x}{\Delta y}$ be?

Solution:

$$
\left.\nabla\left(10 x-x^{2}-\frac{x y}{2}+5 y\right)\right|_{x=4, y=2}=\left.\left(10-2 x-\frac{y}{2},-\frac{x}{2}+5\right)\right|_{x=4, y=2}=(1,3)
$$

Since the gradient points in the direction of maximum growth of the function, if there is an increase $(\triangle x, \Delta y)$, for the function to increase the most, we must have that $(\triangle x, \Delta y)=k(1,3)$. From here we obtain that $\triangle x=k$ y $\triangle y=3 k$. Hence, $\triangle x / \triangle y=1 / 3$.

3-9. Knowing that $\frac{\partial f}{\partial x}(2,3)=7$ and $\left.D_{\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right.}\right) f_{(2,3)}=3 \sqrt{5}$, find $\frac{\partial f}{\partial y}(2,3)$ and $D_{v} f_{(2,3)}$ with $v=\left(\frac{3}{5}, \frac{4}{5}\right)$.
Solution: We know that

$$
D_{\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)} f(2,3)=\left(\frac{\partial f}{\partial x}(2,3), \frac{\partial f}{\partial y}(2,3)\right) \cdot\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)=3 \sqrt{5}
$$

and also

$$
\frac{\partial f}{\partial x}(2,3)=7
$$

Letting

$$
z=\frac{\partial f}{\partial y}(2,3)
$$

we have that

$$
(7, z) \cdot\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)=3 \sqrt{5}
$$

But this is equivalent to

$$
\frac{7 \sqrt{5}}{5}+\frac{2 z \sqrt{5}}{5}=3 \sqrt{5}
$$

And, therefore

$$
\frac{\partial f}{\partial y}(2,3)=4
$$

We may compute now

$$
D_{\left(\frac{3}{5}, \frac{4}{5}\right)} f(2,3)=\left(\frac{\partial f}{\partial x}(2,3), \frac{\partial f}{\partial y}(2,3)\right) \cdot\left(\frac{3}{5}, \frac{4}{5}\right)=(7,4) \cdot\left(\frac{3}{5}, \frac{4}{5}\right)=\frac{37}{5}
$$

3-10. Find the derivative of $f(x, y, z)=x y^{2}+z^{2} y$, along the vector $v=(1,-1,2)$ at the point $(1,1,0)$. Determine the direction which maximizes (resp. minimizes) the directional derivative at the point ($1,1,0$). What are the largest and smallest values of the directional derivative at that point?

Solution: The gradient of the function $f(x, y, z)=x y^{2}+z^{2} y$ at the point $(1,1,0)$ is

$$
\nabla f(1,1,0)=\left.\nabla\left(x y^{2}+z^{2} y\right)\right|_{x=1, y=1, z=0}=\left.\left(y^{2}, 2 x y+z^{2}, 2 z y\right)\right|_{x=1, y=1, z=0}=(1,2,0)
$$

The derivative along v is

$$
D_{v} f(1,1,0)=\nabla f(1,1,0) \cdot v=(1,2,0) \cdot(1,-1,2)=-1
$$

The direction which maximizes the directional derivative is

$$
\frac{\nabla f(1,1,0)}{\|\nabla f(1,1,0)\|}=\frac{1}{\sqrt{5}}(1,2,0)
$$

and the maximum value of the directional derivative is $\|\nabla f(1,1,0)\|=\sqrt{5}$.
Likewise, the direction which minimizes the directional derivative is

$$
-\frac{\nabla f(1,1,0)}{\|\nabla f(1,1,0)\|}=\frac{1}{\sqrt{5}}(-1,-2,0)
$$

and the minimum value of the directional derivative is $-\|\nabla f(1,1,0)\|=-\sqrt{5}$.
3-11. Consider the function $f(x, y)=x^{2}+y^{2}+1$ y $g(x, y)=(x+y, a y)$. Determine:
(a) The value of a for which the function $f \circ g$ grows fastest in the direction of the vector $v=(5,7)$ at the point $p=(1,1)$.
(b) The equations of the tangent and normal lines to the curve $x y^{2}-2 x^{2}+y+5 x=6$ at the point $(4,2)$.

Solution: Consider the functions $f(x, y)=x^{2}+y^{2}+1$ y $g(x, y)=(x+y, a y)$
(a) Their composition is $f(g(x, y))=f(x+y, a y)=(x+y)^{2}+a^{2} y^{2}+1$ and the gradient at the point $(1,1)$ is

$$
\nabla\left(f(g(1,1))=\left.\left(2 x+2 y, 2 x+2 y+2 a^{2} y\right)\right|_{x=1, y=1}=\left(4,4+2 a^{2}\right)\right.
$$

If we want that direction of the vector $v=(5,7)$ is the direction of maximum growth of $f(g(x, y))$ at the point $(1,1)$, we must have that v and $\nabla(f(g(x, y))(1,1)$ are parallel. That is,

$$
\frac{4+2 a^{2}}{4}=\frac{7}{5}
$$

whose solution is

$$
a= \pm \frac{2}{\sqrt{5}}
$$

(b) Note first that the point $(4,2)$ satisfies the equation $x y^{2}-2 x^{2}+y+5 x=6$. Now, the gradient of the function $g(x, y)=x y^{2}-2 x^{2}+y+5 x=6$ at the point $(4,2)$ is

$$
\nabla g(4,2)=\left.\left(y^{2}-4 x+5,2 x y+1\right)\right|_{\substack{x=4 \\ y=2}}=(-7,17)
$$

Thus, the equation of the tangent line is

$$
(-7,17) \cdot(x-4, y-2)=0
$$

and the parametric equations of the normal line are

$$
(x(t), y(t))=(4,2)+t(-7,17)
$$

3-12. Find the Jacobian matrix of F in the following cases.
(a) $F(x, y, z)=\left(x y z, x^{2} z\right)$
(b) $F(x, y)=\left(e^{x y}, \ln x\right)$
(c) $F(x, y, z)=(\sin x y z, x z)$

Solution:

(a) The Jacobian matrix of F is

$$
\mathrm{D} F(x, y, z)=\left(\begin{array}{ccc}
y z & x z & x y \\
2 x z & 0 & x^{2}
\end{array}\right)
$$

(b) The Jacobian matrix of

$$
\mathrm{D} F(x, y, z)=\left(\begin{array}{cc}
y e^{x y} & x e^{x y} \\
1 / x & 0
\end{array}\right)
$$

(c) The Jacobian matrix of

$$
\mathrm{D} F(x, y, z)=\left(\begin{array}{ccc}
y z \cos x y z & x z \cos x y z & x y \cos x y z \\
z & 0 & x
\end{array}\right)
$$

3-13. Using the chain rule compute the derivatives

$$
\frac{\partial z}{\partial r} \quad \frac{\partial z}{\partial \theta}
$$

in the following cases.
(a) $z=x^{2}-2 x y+y^{2}, x=r+\theta, y=r-\theta$
(b) $z=\sqrt{25-5 x^{2}-5 y^{2}}, x=r \cos \theta, y=r \sin \theta$

Solution:

(a)

$$
\begin{aligned}
\frac{\partial z}{\partial r} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial r} \\
& =2 x-2 y-2 x+2 y=0 \\
\frac{\partial z}{\partial \theta} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial \theta} \\
& =2 x-2 y-(-2 x+2 y)=4(x-y)=8 \theta
\end{aligned}
$$

(b)

$$
\begin{aligned}
\frac{\partial z}{\partial r} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial r} \\
& =-\frac{10 x}{2 \sqrt{25-5 x^{2}-5 y^{2}}} \cos \theta-\frac{10 y}{2 \sqrt{25-5 x^{2}-5 y^{2}}} \sin \theta \\
& =-\frac{5 r \cos ^{2} \theta}{\sqrt{25-5 r^{2}}}-\frac{5 r \sin ^{2} \theta}{\sqrt{25-5 r^{2}}}=-\frac{5 r}{\sqrt{25-5 r^{2}}} \\
\frac{\partial z}{\partial \theta} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial \theta} \\
& =-\frac{10 x}{\sqrt{25-5 x^{2}-5 y^{2}}}+\frac{10 y}{\sqrt{25-5 x^{2}-5 y^{2}}} \\
& =-\frac{10 x}{2 \sqrt{25-5 x^{2}-5 y^{2}}}(-r \sin \theta)-\frac{10 y}{2 \sqrt{25-5 x^{2}-5 y^{2}}}(r \cos \theta) \\
& =\frac{5 r^{2} \cos \theta \sin \theta}{\sqrt{25-5 r^{2}}}-\frac{5 r^{2} \cos \theta \sin \theta}{\sqrt{25-5 r^{2}}}=0
\end{aligned}
$$

3-14. Using the capital K at time t generates an instant profit of

$$
B(t)=5(1+t)^{1 / 2} K
$$

Suppose that capital evolves in time according to the equation $K(t)=120 e^{t / 4}$. Determine the rate of change of B.

Solution:

Since

$$
\frac{d K}{d t}=30 e^{t / 4}
$$

we see that

$$
\begin{aligned}
\frac{d}{d t} B= & =\frac{5}{2}(1+t)^{-1 / 2} K+5(1+t)^{1 / 2} \frac{d K}{d t} \\
& =300(1+t)^{-1 / 2} e^{t / 4}+150(1+t)^{1 / 2} e^{t / 4}
\end{aligned}
$$

3-15. Verify the chain rule for the function $h=\frac{x}{y}+\frac{y}{z}+\frac{z}{x}$ with $x=e^{t}, y=e^{t^{2}}$ and $z=e^{t^{3}}$.
3-16. Verify the chain rule for the composition $f \circ c$ in the following cases.
(a) $f(x, y)=x y, c(t)=\left(e^{t}, \cos t\right)$.
(b) $f(x, y)=e^{x y}, c(t)=\left(3 t^{2}, t^{3}\right)$.

Solution:

(a) The functions are $f(x, y)=x y$ and $c(t)=(x(t), y(t))=\left(e^{t}, \cos t\right)$. Therefore, $f(x(t), y(t))=f\left(e^{t}, \cos t\right)=$ $e^{t} \cos t$ and

$$
\frac{d}{d t} f(x(t), y(t))=e^{t} \cos t-e^{t} \sin t
$$

Now, we compute

$$
\nabla f(c(t)) \cdot \frac{d c}{d t}
$$

On the one hand,

$$
\nabla f(x, y)=(y, x)
$$

and

$$
\frac{d c}{d t}=\left(e^{t},-\sin t\right)
$$

Therefore,

$$
\nabla f(c(t)) \cdot \frac{d c}{d t}=y(t) e^{t}-x(t) \sin t
$$

which coincides with the computation above.
(b) The functions are $f(x, y)=e^{x y}$ and $c(t)=(x(t), y(t))=\left(3 t^{2}, t^{3}\right)$. Therefore, $f(x(t), y(t))=f\left(3 t^{2}, t^{3}\right)=$ $e^{3 t^{5}}$ and

$$
\frac{d}{d t} f(x(t), y(t))=15 t^{4} e^{3 t^{5}}
$$

Now, we compute

$$
\nabla f(c(t)) \cdot \frac{d c}{d t}
$$

On the one hand,

$$
\nabla f(x, y)=\left(y e^{x y}, x e^{x y}\right)
$$

and

$$
\frac{d c}{d t}=\left(6 t, 3 t^{2}\right)
$$

Therefore,

$$
\nabla f(c(t)) \cdot \frac{d c}{d t}=\left.\left(6 y e^{x y} t+3 x e^{x y} t^{2}\right)\right|_{x=3 t^{2}, y=t^{3}}=15 t^{4} e^{3 t^{5}}
$$

3-17. Write the chain rule $h^{\prime}(x)$ in the following cases.
(a) $h(x)=f(x, u(x, a))$, where $a \in \mathbb{R}$ is a parameter.
(b) $h(x)=f(x, u(x), v(x))$.

Solution:

(a)

$$
h^{\prime}(x)=\frac{\partial f(x, u(x, a))}{\partial x}+\frac{\partial f(x, u(x, a))}{\partial y} \frac{\partial u(x, a)}{\partial x}
$$

(b)

$$
h^{\prime}(x)=\frac{\partial f(x, u(x), v(x))}{\partial x}+\frac{\partial f(x, u(x), v(x))}{\partial y} u^{\prime}(x)+\frac{\partial f(x, u(x), v(x))}{\partial z} v^{\prime}(x)
$$

3-18. Determine the points at which the tangent plane to the surface $z=e^{(x-1)^{2}+y^{2}}$ is horizontal. Determine the equation of the tangent plane at those points.

Solution: Consider the function of 3 variables

$$
g(x, y, z)=e^{(x-1)^{2}+y^{2}}-z
$$

We are asked to compute the tangent plane to the level surface

$$
A=\left\{(x, y, z) \in \mathbb{R}^{3}: g(x, y, z)=0\right\}
$$

at the point (x, y, z) where this tangent plane is horizontal. At that point we must have that

$$
\nabla g(x, y, z)=(0,0,-1)
$$

Since,

$$
\nabla g(x, y, z)=\left(2(x-1) e^{(x-1)^{2}+y^{2}}, 2 y e^{(x-1)^{2}+y^{2}},-1\right)
$$

we must have that $x=1, y=0$. The z coordinate is

$$
z=\left.e^{(x-1)^{2}+y^{2}}\right|_{x=1, y=0}=1
$$

And the tangent is horizontal at the point $(1,0,1)$. The equation of the tangent plane is

$$
z=1
$$

3-19. Consider the function $f(x, y)=\left(x e^{y}\right)^{3}$.
(a) Compute the equation of the tangent plane to the graph of $f(x, y)$ at the point $(2,0)$.
(b) Using the equation of the tangent plane, find an approximation to $\left(1,999 e^{0,002}\right)^{3}$.

Solution:

(a) We are asked to compute the tangent plane to the graph of f at the point $(2,0, f(2,0))=(2,0,8)$. Consider the function of 3 variables

$$
g(x, y, z)=x^{3} e^{3 y}-z
$$

The graph of f is the level surface of g,

$$
A=\left\{(x, y, z) \in \mathbb{R}^{3}: g(x, y, z)=0\right\}
$$

Therefore, it is enough to compute the tangent plane to the level surface A at the point $(2,0,8)$. Since,

$$
\nabla g(2,0,8)=\left.\left(3 x^{2} e^{y}, 3 x^{3} e^{y},-1\right)\right|_{x=2, y=0, z=8}=(12,24,-1)
$$

the equation of the tangent plane is

$$
(12,24,-1) \cdot(x-2, y, z-8)=0
$$

that is,

$$
12 x+24 y-z=16
$$

(b) We are asked to estimate the function $f(x, y)=x^{3} e^{3 y}$ at the point ($1^{\prime} 999,0^{\prime} 002$). Since, f is differentiable and that point is very close to $(2,0)$, we use Taylor's first order approximation around the point $(2,0)$,

$$
z=12 x+24 y-16
$$

and we obtain that

$$
\left.f\left(1^{\prime} 999,0^{\prime} 002\right) \approx(12 x+24 y-16)\right|_{x=1^{\prime} 999, y=0^{\prime} 002}=8^{\prime} 036
$$

3-20. Compute the tangent plane and normal line to the following level surfaces.
(a) $x^{2}+2 x y+2 y^{2}-z=0$ at the point $(1,1,5)$.
(b) $x^{2}+y^{2}-z=0$ at the point $(1,2,5)$.
(c) $\left(y-x^{2}\right)\left(y-2 x^{2}\right)-z=0$ at the point $(1,3,2)$.

Solution:

(a) We compute the gradient

$$
\left.\nabla\left(x^{2}+2 x y+2 y^{2}-z\right)\right|_{(x, y, z)=(1,1,5)}=\left.(2 x+2 y, 2 x+4 y,-1)\right|_{(x, y, z)=(1,1,5)}=(4,6,-1)
$$

Thus, the equation of the tangent plane is

$$
(4,6,-1) \cdot(x-1, y-1, z-5)=0
$$

that is,

$$
4 x+6 y-z=5
$$

(b) We compute the gradient

$$
\left.\nabla\left(x^{2}+y^{2}-z\right)\right|_{(x, y, z)=(1,2,5)}=\left.(2 x, 2 y,-1)\right|_{(x, y, z)=(1,2,5)}=(2,4,-1)
$$

Thus, the equation of the tangent plane is

$$
(2,4,-1) \cdot(x-1, y-2, z-5)=0
$$

that is,

$$
2 x+4 y-z=5
$$

(c) We compute the gradient

$$
\begin{aligned}
\left.\nabla\left(\left(y-x^{2}\right)\left(y-2 x^{2}\right)-z\right)\right|_{(x, y, z)=(1,3,2)} & =\left.\left(-2 x\left(y-2 x^{2}\right)-4 x\left(y-x^{2}\right), 2 y-3 x^{2},-1\right)\right|_{(x, y, z)=(1,3,2)} \\
& =(-10,3,-1)
\end{aligned}
$$

Thus, the equation of the tangent plane is

$$
(-10,3,-1) \cdot(x-1, y-3, z-2)=0
$$

that is,

$$
10 x-3 y+z=3
$$

3-21. Let $f, g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be two functions with continuous partial derivatives on \mathbb{R}^{2}.
(a) Show that if

$$
\frac{\partial f}{\partial x}(x, y)=\frac{\partial g}{\partial x}(x, y)
$$

at every point $(x, y) \in \mathbb{R}^{2}$, then $f-g$ depends only on y.
(b) Show that if

$$
\frac{\partial f}{\partial y}(x, y)=\frac{\partial g}{\partial y}(x, y)
$$

at every point $(x, y) \in \mathbb{R}^{2}$, then $f-g$ depends only on x.
(c) Show that if $\nabla(f-g)(x, y)=(0,0)$ at every point $(x, y) \in \mathbb{R}^{2}$, then $f-g$ is constant on \mathbb{R}^{2}.
(d) Find a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that

$$
\frac{\partial f}{\partial y}(x, y)=y x^{2}+x+2 y, \quad \frac{\partial f}{\partial x}(x, y)=y^{2} x+y, \quad f(0,0)=1
$$

Are there any other functions satisfying those equations?
Solution: The functions f and g are of class C^{1}.
(a) Let $(a, b),(x, b) \in \mathbb{R}^{2}$. Let $h(x, y)=f(x, y)-g(x, y)$. By the Mean Value Theorem,

$$
h(x, b)-h(a, b)=\nabla h(c) \cdot(x-a, 0)
$$

for some point $c=\left(c_{1}, c_{2}\right)=t(x, b)+(1-t)(a, b)=(t x+(1-t) a, b)$ with $0<t<1$. Since,

$$
\frac{\partial h}{\partial x}(c)=0
$$

we have that $h(x, b)-h(a, b)=0$. That is, $h(x, b)=h(a, b)$ for every $x \in \mathbb{R}$ and the function h does not depend on y
(b) Is very similar to the previous case.
(c) At each point of \mathbb{R}^{2} we have that

$$
\frac{\partial(f-g)}{\partial x}=\frac{\partial(f-g)}{\partial y}=0
$$

so $f-g$ does not depend neither on x nor on y.
(d) We know that $\frac{\partial f}{\partial y}(x, y)=y x^{2}+x+2 y$. Integrating with respect to y,

$$
f(x, y)=\int\left(y x^{2}+x+2 y\right) d y=\frac{1}{2} y^{2} x^{2}+x y+y^{2}+C(x)
$$

where $C(x)$ is a function that depends only on x. The other condition is $\frac{\partial f}{\partial x}(x, y)=y^{2} x+y$. We try this with the function that we have obtained,

$$
\frac{\partial}{\partial x}\left(\frac{1}{2} y^{2} x^{2}+x y+y^{2}+C(x)\right)=y^{2} x+y+C^{\prime}(x)
$$

so, $C^{\prime}(x)=0$ and $C(x)=c$, a constant. To find c we use the condition $f(0,0)=1$. Thus,

$$
\begin{aligned}
f(x, y) & =\frac{1}{2} y^{2} x^{2}+x y+y^{2}+c \\
f(0,0) & =c \text { and } f(0,0)=1 . \text { Hence } c=1
\end{aligned}
$$

The function $f(x, y)=\frac{1}{2} y^{2} x^{2}+x y+y^{2}+1$ satisfies the above conditions. If there were another function g of class C^{1} satisfying the same conditions, we would have that $\nabla(f-g)(x, y)=(0,0)$ at every point $(x, y) \in \mathbb{R}^{2}$. By part (c) there is a constant $A \in \mathbb{R}$ such that

$$
(f-g)(x, y)=A
$$

for every $(x, y) \in \mathbb{R}^{2}$. But, since $f(0,0)=1=g(0,0)$, we have that $A=0$ and the functions coincide.

