CHAPTER 1: Introduction to the Topology of Euclidean Space \mathbb{R}^{n}.

2-1. Sketch the following subsets of \mathbb{R}^{2}. Sketch their boundary and the interior. Study whether the following are closed, open, bounded and/or convex.
(a) $A=\left\{(x, y) \in \mathbb{R}^{2}: 0<\|(x, y)-(1,3)\|<2\right\}$.
(b) $B=\left\{(x, y) \in \mathbb{R}^{2}: y \leq x^{3}\right\}$.
(c) $C=\left\{(x, y) \in \mathbb{R}^{2}:|x|<1,|y| \leq 2\right\}$.
(d) $D=\left\{(x, y) \in \mathbb{R}^{2}:|x|+|y|<1\right\}$.
(e) $E=\left\{(x, y) \in \mathbb{R}^{2}: y<x^{2}, y<1 / x, x>0\right\}$.
(f) $F=\left\{(x, y) \in \mathbb{R}^{2}: x y \leq y+1\right\}$.
(g) $G=\left\{(x, y) \in \mathbb{R}^{2}:(x-1)^{2}+y^{2} \leq 1, x \leq 1\right\}$.

2-2. Let A be a subset of \mathbb{R}^{2}. Discuss which of the following assertions are true.
(a) $\operatorname{Int}(A)=A-\partial(A)$.
(b) $\partial(A)=\partial\left(\mathbb{R}^{2}-A\right)=\partial\left(A^{C}\right)$.
(c) $\partial(A)$ is bounded.
(d) A is closed if and only if A^{C} is open.
(e) A is bounded if and only if A^{C} is not bounded.
(f) A is closed if and only if $\partial(A) \subset A$.
(g) A is open if and only if $(\partial A) \cap A=\emptyset$.

