UNIVERSITY CARLOS III OF MADRID

MATHEMATICS FOR ECONOMICS I

EXERCISES (SOLUTIONS)

FALL 2021

CHAPTER 1: Introduction to the Topology of Euclidean Space \mathbb{R}^n .

- 2-1. Sketch the following subsets of \mathbb{R}^2 . Sketch their boundary and the interior. Study whether the following are closed, open, bounded and/or convex.
 - (a) $A = \{(x, y) \in \mathbb{R}^2 : 0 < ||(x, y) (1, 3)|| < 2\}.$ (b) $B = \{(x, y) \in \mathbb{R}^2 : y \le x^3\}.$ (c) $C = \{(x, y) \in \mathbb{R}^2 : |x| < 1, |y| \le 2\}.$ (d) $D = \{(x, y) \in \mathbb{R}^2 : |x| + |y| < 1\}.$ (c) $E = \{(x, y) \in \mathbb{R}^2 : y < x^2, y < 1/x, x > 0\}.$ (f) $F = \{(x, y) \in \mathbb{R}^2 : xy \le y + 1\}.$ (g) $G = \{(x, y) \in \mathbb{R}^2 : (x - 1)^2 + y^2 \le 1, x \le 1\}.$

Solution:

(a) The set represents the disk of center C = (1,3) and radius 2 with the center removed.

$$f(x,y) = \|(x,y) - (1,3)\| = \sqrt{(x-1)^2 + (y-3)^2}$$

is continuous and the set A may be written as

 $A = \{(x, y) \in \mathbb{R}^2 : 0 < f(x, y) < 2\} = \{(x, y) \in \mathbb{R}^2 : f(x, y) \in (0, 2)\}$

Since, the interval $(0,2) \subset \mathbb{R}$ is open, the set A is open. It is also bounded, since it is contained in the disc { $(x, y) \in \mathbb{R}^2$: ||(x, y) - (1, 3)|| < 2 }.

In addition, it is not convex since the points P = (1,4) and Q = (1,2) belong to A but the convex combination

$$\frac{1}{2}(1,4) + \frac{1}{2}(1,2) = (1,3)$$

does not belong to the set A.

The interior, boundary and closure of A are represented in the following figure

Note that $\partial A \cap A = \emptyset$. This gives another way to prove that the set A is open.

(b) The function $f : \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = x^3 - y$$

is continuous and the set B may be written as

$$B = \{(x, y) \in \mathbb{R}^2 : f(x, y) \ge 0\} = \{(x, y) \in \mathbb{R}^2 : f(x, y) \in [0, \infty)\}$$

Since, the interval $[0, \infty) \subset \mathbb{R}$ is closed, the set B is closed.

The set B is not bounded since, for example, the points

$$(1,0), (2,0), \ldots, (n,0), \ldots$$

belong to B and

$$\lim_{n\to\infty}\|(n,0)\|=+\infty$$

Furthermore, it is not convex since the points P = (0,0) and Q = (1,1) belong to B but the convex $\operatorname{combination}$

does not belong to B, because it does not satisfy the equation $y \leq x^3$. The interior of B is the set $\{(x, y) \in \mathbb{R}^2 : y < x^3\}$. The boundary of B is the set $\partial(B) = \{(x, y) \in \mathbb{R}^2 : y \leq x^3\}$. And the closure of B is the set $\overline{B} = B \cup \partial(B) = \{(x, y) \in \mathbb{R}^2 : y \leq x^3\}$. Since, $\overline{B} = B$, the set is closed.

(c) Graphically, the set C is

belong to $\partial(C)$. Since, $P \notin C$, we see that C is not closed and since $Q \in C$, we see that C is not open.

Graphically, we see that the set C is convex. An alternative way to prove this is by noting that the set C is determined by the following linear inequalities

$$x > -1, \qquad x < 1, \qquad y \ge -2, \qquad y \le 2$$

The interior, boundary and closure of A are represented in the following figure

We see that $\partial(C) \cap C \neq \emptyset$, so the set is not open. Furthermore, $C \neq \overline{C}$ so the set is not closed.

(d) The following functions defined from \mathbb{R}^2 into \mathbb{R} are continuous.

$$f_1(x, y) = y - x - 1$$

$$f_2(x, y) = y - 1 + x$$

$$f_3(x, y) = y + x + 1$$

$$f_4(x, y) = y - x + 1$$

The set ${\cal D}$

is defined by

 $D = \{(x,y) \in \mathbb{R}^2 : f_1(x,y) < 0, \quad f_2(x,y) < 0, \quad f_3(x,y) > 0, \quad f_4(x,y) > 0\}$

so it is open and convex. The set D is bounded because is contained in the disc of center (0,0) and radius 1.

The interior, boundary and closure of A are represented in the following figure

3

Since, $\partial(D) \cap D = \emptyset$, the set is open.

(e) The graphic representation of E is

The functions

$$f_1(x, y) = y - x^2 f_2(x, y) = y - 1/x f_3(x, y) = x$$

are defined from \mathbb{R}^2 into \mathbb{R} and are continuous. The set E is defined by

$$E = \{(x, y) \in \mathbb{R}^2 : f_1(x, y) < 0, f_2(x, y) < 0, f_3(x, y) > 0\}$$

so it is open. The set E is not bounded because the points

$$(n,0) \quad n=1,2,\ldots$$

belong to E and

$$\lim_{n \to \infty} \|(n,0)\| = \lim_{n \to \infty} n = +\infty$$

In addition, it is not convex because the points P = (0'2, 0) and Q = (1, 0'8) belong to E but the convex combination

$$R = \frac{1}{2}P + \frac{1}{2}Q = (0'6, 0'4)$$

does not belong to E, because it does not satisfy the inequality $y < x^2$. The interior, boundary and closure of E are represented in the following figure

Since $\partial(E) \cap E = \emptyset$, the set **is open**.

(f) Graphically, the F is

The function f(x,y) = xy - y defined from \mathbb{R}^2 into \mathbb{R} is continuous. The set F is $F = \{(x,y) \in \mathbb{R}^2 : f(x,y) \leq 1\}$ so is closed. The set F is not bounded because the points

$$(n,0) \quad n=1,2,\ldots$$

are in E and

$$\lim_{n \to \infty} \| (n, 0) \| = \lim_{n \to \infty} n = +\infty$$

The figure

shows why F is not convex. The interior, closure and boundary of F are represented in the following figure

Since $\partial(F) \subset F$, the set F is closed.

(g) Graphically the set G is

The functions $f(x,y) = (x-1)^2 + y^2$ and g(x,y) = x defined from \mathbb{R}^2 into \mathbb{R} are continuous. The set G is $G = \{(x,y) \in \mathbb{R}^2 : f(x,y) \leq 1, g(x,y) \leq 1\}$ so it **is closed**. The set G **is bounded** because it is contained in the disc of center (1,0) and radius 1. Further, the set G **is convex**. The interior, boundary and the closure of G are represented in the following figure

Since $\partial(G) \subset G$, the set G is closed.

- 2-2. Let A be a subset of \mathbb{R}^2 . Discuss which of the following assertions are true.
 - (a) $Int(A) = A \partial(A)$.
 - (b) $\partial(A) = \partial(\mathbb{R}^2 A) = \partial(A^C).$
 - (c) $\partial(A)$ is bounded.
 - (d) A is closed if and only if A^C is open.
 - (e) A is bounded if and only if A^C is not bounded.
 - (f) A is closed if and only if $\partial(A) \subset A$.
 - (g) A is open if and only if $(\partial A) \cap A = \emptyset$.

Solution:

- (a) Yes, because: $x \in \text{Int}(A) \iff \exists \varepsilon > 0 : B(x, \varepsilon) \subset A \iff \exists \varepsilon > 0 : B(x, \varepsilon) \cap (\mathbb{R}^n \setminus A) = \emptyset \iff x \in A \text{ and } x \notin \partial A.$
- (b) Yes, because: $\partial(\mathbb{R}^n \setminus A) = \overline{\mathbb{R}^n \setminus A} \cap \overline{\mathbb{R}^n \setminus (\mathbb{R}^n \setminus A)} = \overline{\mathbb{R}^n \setminus A} \cap \overline{A} = \partial(A).$
- (c) No. Example: $A = \{(x, y) \in \mathbb{R}^2 : x \ge 0\}.$
- (d) Yes. By definition.
- (e) No. Example: $A = \{(x, y) \in \mathbb{R}^2 : x \ge 0\}.$
- (f) Yes, because: A is closed $\iff \mathbb{R}^n \setminus A$ is open $\iff \mathbb{R}^n \setminus A = \operatorname{Int}(\mathbb{R}^n \setminus A)$. But, from (a) and (b), $\operatorname{Int}(\mathbb{R}^n \setminus A) = (\mathbb{R}^n \setminus A) \setminus \partial(\mathbb{R}^n \setminus A) = (\mathbb{R}^n \setminus A) \setminus \partial(A)$. Therefore A is closed $\iff \mathbb{R}^n \setminus A = (\mathbb{R}^n \setminus A) \setminus \partial A$ $\iff (\partial A) \subset A$.
- (g) Yes, because: A is open $\iff A = Int(A) \iff A = A \setminus \partial A \iff A \cap A = \emptyset$.