CHAPTER 1: Introduction to the Topology of Euclidean Space \mathbb{R}^{n}.

2-1. Sketch the following subsets of \mathbb{R}^{2}. Sketch their boundary and the interior. Study whether the following are closed, open, bounded and/or convex.
(a) $A=\left\{(x, y) \in \mathbb{R}^{2}: 0<\|(x, y)-(1,3)\|<2\right\}$.
(b) $B=\left\{(x, y) \in \mathbb{R}^{2}: y \leq x^{3}\right\}$.
(c) $C=\left\{(x, y) \in \mathbb{R}^{2}:|x|<1,|y| \leq 2\right\}$.
(d) $D=\left\{(x, y) \in \mathbb{R}^{2}:|x|+|y|<1\right\}$.
(e) $E=\left\{(x, y) \in \mathbb{R}^{2}: y<x^{2}, y<1 / x, x>0\right\}$.
(f) $F=\left\{(x, y) \in \mathbb{R}^{2}: x y \leq y+1\right\}$.
(g) $G=\left\{(x, y) \in \mathbb{R}^{2}:(x-1)^{2}+y^{2} \leq 1, x \leq 1\right\}$.

Solution:

(a) The set represents the disk of center $C=(1,3)$ and radius 2 with the center removed.

The function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)=\|(x, y)-(1,3)\|=\sqrt{(x-1)^{2}+(y-3)^{2}}
$$

is continuous and the set A may be written as

$$
A=\left\{(x, y) \in \mathbb{R}^{2}: 0<f(x, y)<2\right\}=\left\{(x, y) \in \mathbb{R}^{2}: f(x, y) \in(0,2)\right\}
$$

Since, the interval $(0,2) \subset \mathbb{R}$ is open, the set A is open. It is also bounded, since it is contained in the disc $\left\{(x, y) \in \mathbb{R}^{2}:\|(x, y)-(1,3)\|<2\right\}$.
In addition, it is not convex since the points $P=(1,4)$ and $Q=(1,2)$ belong to A but the convex combination

$$
\frac{1}{2}(1,4)+\frac{1}{2}(1,2)=(1,3)
$$

does not belong to the set A.
The interior, boundary and closure of A are represented in the following figure

Note that $\partial A \cap A=\emptyset$. This gives another way to prove that the set A is open.
(b) The function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)=x^{3}-y
$$

is continuous and the set B may be written as

$$
B=\left\{(x, y) \in \mathbb{R}^{2}: f(x, y) \geq 0\right\}=\left\{(x, y) \in \mathbb{R}^{2}: f(x, y) \in[0, \infty)\right\}
$$

Since, the interval $[0, \infty) \subset \mathbb{R}$ is closed, the set B is closed.

The set B is not bounded since, for example, the points

$$
(1,0),(2,0), \ldots,(\underline{n}, 0), \ldots
$$

belong to B and

$$
\lim _{n \rightarrow \infty}\|(n, 0)\|=+\infty
$$

Furthermore, it is not convex since the points $P=(0,0)$ and $Q=(1,1)$ belong to B but the convex combination

$$
C=\frac{1}{2} P+\frac{1}{2} Q=\left(\frac{1}{2}, \frac{1}{2}\right)
$$

does not belong to B, because it does not satisfy the equation $y \leq x^{3}$.
The interior of B is the set $\left\{(x, y) \in \mathbb{R}^{2}: y<x^{3}\right\}$. The boundary of B is the set $\partial(B)=\left\{(x, y) \in \mathbb{R}^{2}\right.$: $\left.y=x^{3}\right\}$. And the closure of B is the set $\bar{B}=B \cup \partial(B)=\left\{(x, y) \in \mathbb{R}^{2}: y \leq x^{3}\right\}$. Since, $\bar{B}=B$, the set is closed.
(c) Graphically, the set C is

The points P and Q in the figure

belong to $\partial(C)$. Since, $P \notin C$, we see that C is not closed and since $Q \in C$, we see that C is not open.
Graphically, we see that the set C is convex. An alternative way to prove this is by noting that the set C is determined by the following linear inequalities

$$
x>-1, \quad x<1, \quad y \geq-2, \quad y \leq 2
$$

The interior, boundary and closure of A are represented in the following figure

We see that $\partial(C) \cap C \neq \emptyset$, so the set is not open. Furthermore, $C \neq \bar{C}$ so the set is not closed.
(d) The following functions defined from \mathbb{R}^{2} into \mathbb{R} are continuous.

$$
\begin{aligned}
& f_{1}(x, y)=y-x-1 \\
& f_{2}(x, y)=y-1+x \\
& f_{3}(x, y)=y+x+1 \\
& f_{4}(x, y)=y-x+1
\end{aligned}
$$

The set D
is defined by

$$
D=\left\{(x, y) \in \mathbb{R}^{2}: f_{1}(x, y)<0, \quad f_{2}(x, y)<0, \quad f_{3}(x, y)>0, \quad f_{4}(x, y)>0\right\}
$$

so it is open and convex. The set D is bounded because is contained in the disc of center $(0,0)$ and radius 1 .
The interior, boundary and closure of A are represented in the following figure

Interior

boundary

closure

Since, $\partial(D) \cap D=\emptyset$, the set is open.
(e) The graphic representation of E is

The functions

$$
\begin{aligned}
f_{1}(x, y) & =y-x^{2} \\
f_{2}(x, y) & =y-1 / x \\
f_{3}(x, y) & =x
\end{aligned}
$$

are defined from \mathbb{R}^{2} into \mathbb{R} and are continuous. The set E is defined by

$$
E=\left\{(x, y) \in \mathbb{R}^{2}: f_{1}(x, y)<0, f_{2}(x, y)<0, f_{3}(x, y)>0\right\}
$$

so it is open. The set E is not bounded because the points

$$
(n, 0) \quad n=1,2, \ldots
$$

belong to E and

$$
\lim _{n \rightarrow \infty}\|(n, 0)\|=\lim _{n \rightarrow \infty} n=+\infty
$$

In addition, it is not convex because the points $P=\left(0^{\prime} 2,0\right)$ and $Q=\left(1,0^{\prime} 8\right)$ belong to E but the convex combination

$$
R=\frac{1}{2} P+\frac{1}{2} Q=\left(0^{\prime} 6,0^{\prime} 4\right)
$$

does not belong to E, because it does not satisfy the inequality $y<x^{2}$. The interior, boundary and closure of E are represented in the following figure

Interior

boundary

closure

Since $\partial(E) \cap E=\emptyset$, the set is open.
(f) Graphically, the F is

The function $f(x, y)=x y-y$ defined from \mathbb{R}^{2} into \mathbb{R} is continuous. The set F is $F=\left\{(x, y) \in \mathbb{R}^{2}\right.$: $f(x, y) \leq 1\}$ so is closed. The set F is not bounded because the points

$$
(n, 0) \quad n=1,2, \ldots
$$

are in E and

$$
\lim _{n \rightarrow \infty}\|(n, 0)\|=\lim _{n \rightarrow \infty} n=+\infty
$$

The figure

shows why F is not convex. The interior, closure and boundary of F are represented in the following figure

Since $\partial(F) \subset F$, the set F is closed.
(g) Graphically the set G is

The functions $f(x, y)=(x-1)^{2}+y^{2}$ and $g(x, y)=x$ defined from \mathbb{R}^{2} into \mathbb{R} are continuous. The set G is $G=\left\{(x, y) \in \mathbb{R}^{2}: f(x, y) \leq 1, \quad g(x, y) \leq 1\right\}$ so it is closed. The set G is bounded because it is contained in the disc of center $(1,0)$ and radius 1 . Further, the set G is convex. The interior, boundary and the closure of G are represented in the following figure

Since $\partial(G) \subset G$, the set G is closed.

2-2. Let A be a subset of \mathbb{R}^{2}. Discuss which of the following assertions are true.
(a) $\operatorname{Int}(A)=A-\partial(A)$.
(b) $\partial(A)=\partial\left(\mathbb{R}^{2}-A\right)=\partial\left(A^{C}\right)$.
(c) $\partial(A)$ is bounded.
(d) A is closed if and only if A^{C} is open.
(e) A is bounded if and only if A^{C} is not bounded.
(f) A is closed if and only if $\partial(A) \subset A$.
(g) A is open if and only if $(\partial A) \cap A=\emptyset$.

Solution:

(a) Yes, because: $x \in \operatorname{Int}(A) \Longleftrightarrow \exists \varepsilon>0: B(x, \varepsilon) \subset A \Longleftrightarrow \exists \varepsilon>0: B(x, \varepsilon) \cap\left(\mathbb{R}^{n} \backslash A\right)=\emptyset \Longleftrightarrow x \in A$ and $x \notin \partial A$.
(b) Yes, because: $\partial\left(\mathbb{R}^{n} \backslash A\right)=\overline{\mathbb{R}^{n} \backslash A} \cap \overline{\mathbb{R}^{n} \backslash\left(\mathbb{R}^{n} \backslash A\right)}=\overline{\mathbb{R}^{n} \backslash A} \cap \bar{A}=\partial(A)$.
(c) No. Example: $A=\left\{(x, y) \in \mathbb{R}^{2}: x \geq 0\right\}$.
(d) Yes. By definition.
(e) No. Example: $A=\left\{(x, y) \in \mathbb{R}^{2}: x \geq 0\right\}$.
(f) Yes, because: A is closed $\Longleftrightarrow \mathbb{R}^{n} \backslash A$ is open $\Longleftrightarrow \mathbb{R}^{n} \backslash A=\operatorname{Int}\left(\mathbb{R}^{n} \backslash A\right)$. But, from (a) and (b), $\operatorname{Int}\left(\mathbb{R}^{n} \backslash A\right)=\left(\mathbb{R}^{n} \backslash A\right) \backslash \partial\left(\mathbb{R}^{n} \backslash A\right)=\left(\mathbb{R}^{n} \backslash A\right) \backslash \partial(A)$. Therefore A is closed $\Longleftrightarrow \mathbb{R}^{n} \backslash A=\left(\mathbb{R}^{n} \backslash A\right) \backslash \partial A$ $\Longleftrightarrow(\partial A) \subset A$.
(g) Yes, because: A is open $\Longleftrightarrow A=\operatorname{Int}(A) \Longleftrightarrow A=A \backslash \partial A \Longleftrightarrow A \cap A=\emptyset$.

