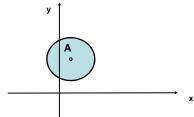
PROBLEMAS (SOLUCIONES)

HOJA 1: El Espacio Euclidiano \mathbb{R}^n .

- (1) Dibuja cada uno de los subconjuntos de \mathbb{R}^2 siguientes. Dibuja su frontera y su interior. Estudia si son abiertos, cerrados, acotados o convexos.
 - (a) $A = \{(x, y) \in \mathbb{R}^2 : 0 < ||(x, y) (1, 3)|| < 2\}.$
 - (b) $B = \{(x, y) \in \mathbb{R}^2 : y \le x^3\}.$
 - (c) $C = \{(x, y) \in \mathbb{R}^2 : |x| < 1, |y| \le 2\}.$
 - (d) $D = \{(x, y) \in \mathbb{R}^2 : |x| + |y| < 1\}.$
 - (e) $E = \{(x, y) \in \mathbb{R}^2 : y < x^2, y < 1/x, x > 0\}.$
 - (f) $F = \{(x, y) \in \mathbb{R}^2 : xy \le y + 1\}.$
 - (g) $G = \{(x, y) \in \mathbb{R}^2 : (x 1)^2 + y^2 \le 1, x \le 1\}.$

Solución:

(a) El conjunto representa al disco de centro C = (1,3) y radio 2, al que se le quitado el centro.



La función $f: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) = \|(x,y) - (1,3)\| = \sqrt{(x-1)^2 + (y-3)^2}$$

es continua y el conjunto A se puede escribir como

$$A = \{(x, y) \in \mathbb{R}^2 : 0 < f(x, y) < 2\} = \{(x, y) \in \mathbb{R}^2 : f(x, y) \in (0, 2)\}$$

Como el intervalo $(0,2) \subset \mathbb{R}$ es abierto, el conjunto A es **abierto**. Es **acotado**, ya que está contenido en el disco $\{(x,y) \in \mathbb{R}^2 : ||(x,y)-(1,3)|| < 2\}$.

Además, no es convexo ya que los puntos P=(1,4) y Q=(1,2) pertenecen a A pero la combinación convexa

$$\frac{1}{2}(1,4) + \frac{1}{2}(1,2) = (1,3)$$

no pertenece al conjunto A.

El interior, la frontera y la clausura de A están representados en el gráfico siguiente

Observemos que $\partial A \cap A = \emptyset$. Esto proporciona otra forma de demostrar que el conjunto A es abierto.

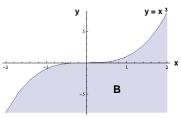
(b) La función $f: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) = x^3 - y$$

es continua y el conjunto B se puede escribir como

$$B = \{(x,y) \in \mathbb{R}^2 : f(x,y) \ge 0\} = \{(x,y) \in \mathbb{R}^2 : f(x,y) \in [0,\infty)\}$$

Como el intervalo $[0, \infty) \subset \mathbb{R}$ es cerrado, el conjunto B es **cerrado**.



El conjunto B no es acotado ya que, por ejemplo, los puntos

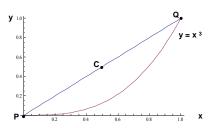
$$(1,0),(2,0),\ldots,(n,0),\ldots$$

están en B pero

$$\lim_{n \to \infty} \|(n,0)\| = +\infty$$

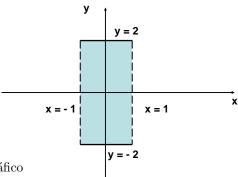
Además, no es convexo ya que los puntos P=(0,0) y Q=(1,1) pertenecen a B pero la combinación convexa

$$C = \frac{1}{2}P + \frac{1}{2}Q = \left(\frac{1}{2}, \frac{1}{2}\right)$$

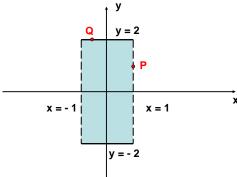


no pertenece al conjunto B, ya que no verifica la ecuación $y \leq x^3$. El interior de B es el conjunto $\{(x,y) \in \mathbb{R}^2 : y < x^3\}$. La frontera de B es el conjunto $\partial(B) = \{(x,y) \in \mathbb{R}^2 : y = x^3\}$. Y La clausura de B es el conjunto $\bar{B} = B \cup \partial(B) = \{(x,y) \in \mathbb{R}^2 : y \leq x^3\}$. Como $\bar{B} = B$, el conjunto **es cerrado**.

(c) La representación gráfica del conjunto C es



Los puntos P y Q del gráfico

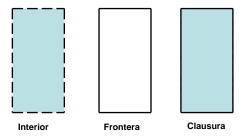


están en la frontera de C. Como $P \notin C$, vemos que C no es cerrado y como $Q \in C$, vemos que C no es abierto.

Gráficamente, vemos que el conjunto C es convexo. Otra forma de demostrar esto es que el conjunto C está determinado por las desigualdades lineales

$$x > -1,$$
 $x < 1,$ $y \ge -2,$ $y \le 2$

El interior, la frontera y la clausura de A están representados en el gráfico siguiente



Vemos que $\partial(C) \cap C \neq \emptyset$, por lo que el conjunto **no es abierto**. Además, $C \neq \bar{C}$ por lo que el conjunto **no es cerrado**.

(d) Las funciones siguientes están definidas de \mathbb{R}^2 en \mathbb{R} y son continuas.

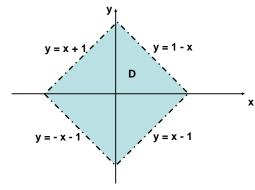
$$f_1(x,y) = y - x - 1$$

$$f_2(x,y) = y - 1 + x$$

$$f_3(x,y) = y + x + 1$$

$$f_4(x,y) = y - x + 1$$

El conjunto D

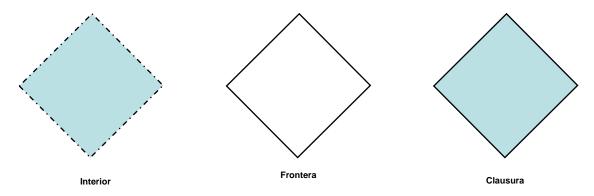


está definido por

$$D = \{(x,y) \in \mathbb{R}^2 : f_1(x,y) < 0, \quad f_2(x,y) < 0, \quad f_3(x,y) > 0, \quad f_4(x,y) > 0\}$$

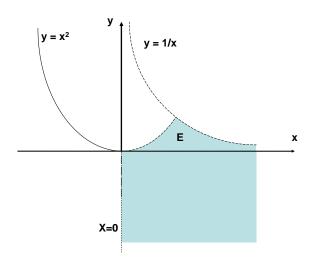
por lo que **es abierto y convexo**. El conjunto D **es acotado** porque está contenido en la bola de centro (0,0) y radio 1.

El interior, la frontera y la clausura de A están representados en el gráfico siguiente



Como $\partial(D) \cap D = \emptyset$, el conjunto **es abierto**.

(e) La representación gráfica del conjunto E es



Las funciones

$$f_1(x,y) = y - x^2$$

$$f_2(x,y) = y - 1/x$$

$$f_3(x,y) = x$$

están definidas de \mathbb{R}^2 en \mathbb{R} y son continuas. El conjunto E está definido por

$$E = \{(x, y) \in \mathbb{R}^2 : f_1(x, y) < 0, f_2(x, y) < 0, f_3(x, y) > 0\}$$

por lo que es abierto. El conjunto E no es acotado porque los puntos de la forma

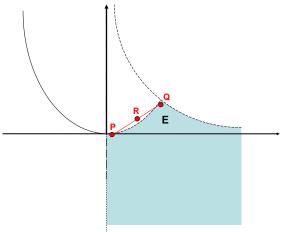
$$(n,0)$$
 $n=1,2,...$

están en E y

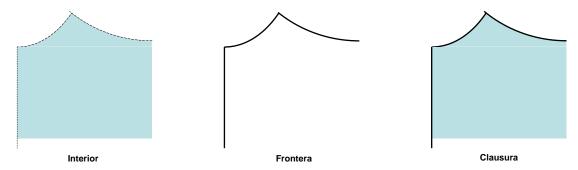
$$\lim_{n\to\infty}\|\left(n,0\right)\|=\lim_{n\to\infty}n=+\infty$$

Además, **no es convexo** ya que los puntos P=(0'2,0) y Q=(1,0'8) pertenecen a E pero la combinación convexa

$$R = \frac{1}{2}P + \frac{1}{2}Q = (0'6, 0'4)$$

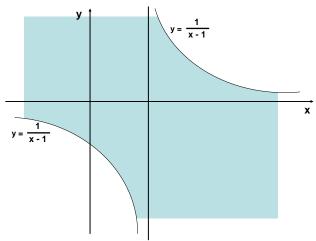


no pertenece a E porque no satisface la desigualdad $y < x^2$. El interior, la frontera y la clausura de E están representados en el gráfico siguiente



Como $\partial(E) \cap E = \emptyset$, el conjunto **es abierto**.

(f) La representación gráfica del conjunto F es



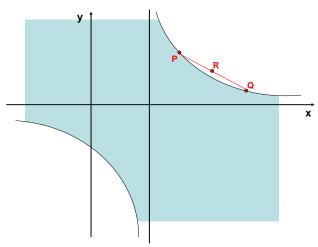
La función f(x,y)=xy-y definida de \mathbb{R}^2 en \mathbb{R} es continua. El conjunto F es $F=\{(x,y)\in\mathbb{R}^2:f(x,y)\leq 1\}$ por lo que **es cerrado**. El conjunto F **no es acotado** porque los puntos de la forma

$$(n,0)$$
 $n=1,2,...$

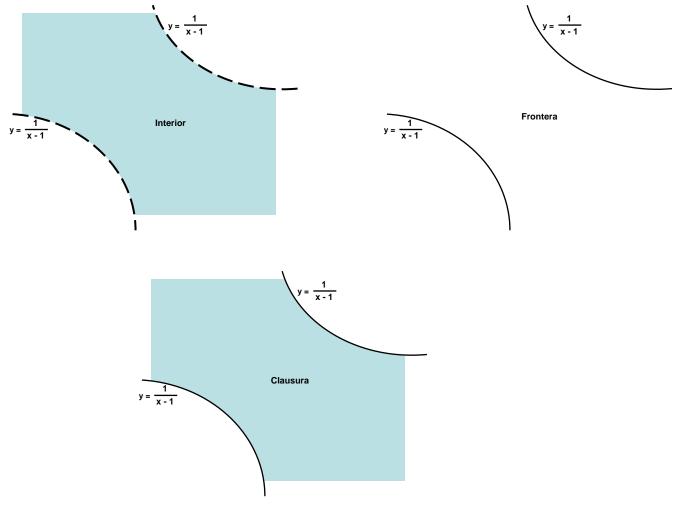
están en ${\cal E}$ y

$$\lim_{n\to\infty}\|\left(n,0\right)\|=\lim_{n\to\infty}n=+\infty$$

El diagrama

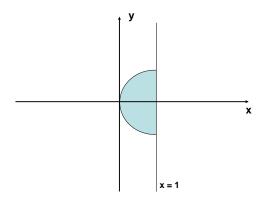


ilustra por qué F no es convexo. El interior, la frontera y la clausura de F están representados en el gráfico siguiente

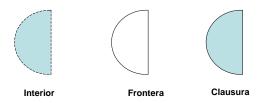


Como $\partial(F) \subset F$, el conjunto F es cerrado.

(g) La representación gráfica del conjunto ${\cal G}$ es



Las funciones $f(x,y)=(x-1)^2+y^2$ y g(x,y)=x definidas de \mathbb{R}^2 en \mathbb{R} son continuas. El conjunto G es $G=\{(x,y)\in\mathbb{R}^2: f(x,y)\leq 1,\ g(x,y)\leq 1\}$ por lo que **es cerrado**. El conjunto G **es acotado** porque coincide con el disco de centro (1,0) y radio 1. Además, el conjunto G **es convexo**. El interior, la frontera y la clausura de G están representados en el gráfico siguiente



Como $\partial(G) \subset G$, el conjunto G es **cerrado**.

- (2) Sea A un subconjunto de \mathbb{R}^2 . Discute la veracidad o falsedad de las siguientes afirmaciones.
 - (a) Int(A) = A Fr(A).
 - (b) $Fr(A) = Fr(\mathbb{R}^2 A) = Fr(A^C)$.
 - (c) Fr(A) está acotada.
 - (d) A es cerrado \iff A^C es abierto.
 - (e) A es acotado \iff A^C no es acotado.
 - (f) A es $cerrado \iff Fr(A) \subset A$.
 - (g) A es abierto \iff $Fr(A) \cap A = \emptyset$.

Solución:

- (a) Si, porque: $x \in \text{Int}(A) \iff \exists \ \varepsilon > 0 : B(x, \varepsilon) \subset A \iff \exists \ \varepsilon > 0 : B(x, \varepsilon) \cap (\mathbb{R}^n \setminus A) = \emptyset \iff x \in A \text{ y} x \notin \text{Fr}(A).$
- (b) Si, porque: $\operatorname{Fr}(\mathbb{R}^n \setminus A) = \overline{\mathbb{R}^n \setminus A} \cap \overline{\mathbb{R}^n \setminus (\mathbb{R}^n \setminus A)} = \overline{\mathbb{R}^n \setminus A} \cap \overline{A} = \operatorname{Fr}(A)$.
- (c) No. Ejemplo: $A = \{(x, y) \in \mathbb{R}^2 : x \ge 0\}.$
- (d) Si. Por definición.
- (e) No. Ejemplo: $A = \{(x, y) \in \mathbb{R}^2 : x \ge 0\}.$
- (f) Si, porque: A es cerrado $\iff \mathbb{R}^n \setminus A$ es abierto $\iff \mathbb{R}^n \setminus A = \operatorname{Int}(\mathbb{R}^n \setminus A)$. Pero, por (a) y (c), $\operatorname{Int}(\mathbb{R}^n \setminus A) = (\mathbb{R}^n \setminus A) \setminus \operatorname{Fr}(\mathbb{R}^n \setminus A) \setminus \operatorname{Fr}(A)$. Por lo que A es cerrado $\iff \mathbb{R}^n \setminus A = (\mathbb{R}^n \setminus A) \setminus \operatorname{Fr}(A) \iff \operatorname{Fr}(A) \subset A$.
- (g) Si, porque: A es abierto \iff $A = Int(A) \iff$ $A = A \setminus Fr(A) \iff$ $A \cap Fr(A) = \emptyset$.