Session 9 Mathematics for Economics I

Chapter 3: Differentiability. Part IV: Line and tangent planes. Taylor's polynomial of order 1

Degrees in Economics, International-Studies-and-Economics and Law-and-Economics

Universidad Carlos III de Madrid

Gradient and level curves.

- Consider the level surface $S_C = \{x \in D : f(x) = C\}.$
- Let $\sigma: \mathbb{R} \to \mathbb{R}^n$ be a differentiable curve and suppose that $\sigma(t) \in S_C$ for all $t \in \mathbb{R}$. That is $f(\sigma(t)) = c$ for every $t \in \mathbb{R}$.
- Then, $0 = \frac{d}{dt} f(\sigma(t)) = \nabla f(\sigma(t)) \cdot \frac{d\sigma}{dt}$
- That is $\nabla f(\sigma(t))$ and $d\sigma(t)/dt$ are perpendicular for every $t \in \mathbb{R}$.

• $\nabla f(\sigma(t))$ is perpendicular to the surface $S_C = \{x \in D : f(x) = C\}$.

Example.

- Consider the surface given by the equation $3x^2 + 2y^2 + 5z^2 = 56$.
- The gradient of the function $f(x, y, z) = 3x^2 + 2y^2 + 5z^2$ is $\nabla f(x, y, z) = (6x, 4y, 10z)$.
- At the point p = (-1, 2, -3) we get $\nabla f(-1, 2, -3) = (-6, 8, -30)$.
- The equation of the tangent plane is -6(1+x)+8(-2+y)-30(3+z)=0 or -6x+8y-30z=112.
- The parametric equations of the normal line are (x, y, z) = (-1, 2, -3) + t(-6, 8, -30).
- That is, x = -1 6t, y = 2 + 8t, z = -3 30t.

Plane tangent to the graph of a function.

- The graph of f is the set $G = \{(x, y, f(x, y)) : (x, y) \in \mathbb{R}^2\}.$
- Define g(x, y, z) = f(x, y) z. The graph of f may be written as $G = \{(x, y, z) \in \mathbb{R}^3 : g(x, y, z) = 0\}$.
- An equation for the tangent plane to G at p = (a, b) is

$$\nabla g(a, b, f(a, b)) \cdot ((x, y, z) - (a, b, f(a, b))) = 0$$

- Since, $\nabla g(a, b, f(a, b)) = \left(\frac{\partial f}{\partial x}(a, b), \frac{\partial f}{\partial y}(a, b), -1\right)$.
- We obtain

$$z = f(a,b) + \frac{\partial f}{\partial x}(a,b) \cdot (x-a) + \frac{\partial f}{\partial y}(a,b) \cdot (y-b)$$

Taylor polynomial of first order.

• Let $f \in C^1(D)$, $p \in D$. The Taylor polynomial of first order at p is

$$P_1(x) = f(p) + \nabla f(p) \cdot (x - p)$$

• If f(x, y) is a function of two variables and p = (a, b), then Taylor's first order polynomial for the function f around the point p = (a, b) is the polynomial

$$P_1(x,y) = f(a,b) + \frac{\partial f}{\partial x}(a,b) \cdot (x-a) + \frac{\partial f}{\partial y}(a,b) \cdot (y-b)$$

Taylor's first order polynomial.

• The function f is differentiable at (a, b) if

$$\lim_{(x,y)\to(a,b)} \frac{|f(x,y)-P_1(x,y)|}{\|(x-a,y-b)\|} = 0$$

 That is, if the tangent plane is a 'good' approximation to the value of the function

$$f(x,y) \approx f(a,b) + \frac{\partial f}{\partial x}(a,b) \cdot (x-a) + \frac{\partial f}{\partial y}(a,b) \cdot (y-b)$$

Example.

- $f(x,y) = -2y + xy^3 2xy + 4x y^2 + 1$ and p = (-1,1). Let us compute the equation of the tangent plane to the graph of the function f at the point (p, f(p)).
- The equation of the tangent plane is

$$z = f(-1,1) + \nabla f(p) \cdot (x+1, y-1) =$$

$$= -5 + (3, -5) \cdot (x+1, y-1) =$$

$$= -5 + 3(x+1) - 5(y-1)$$

• It coincides with Taylor's first order polynomial of f at p.

Example.

- Consider the function $f(x,y) = 2x^2y xy + 2x 2y^2 15y + 1$ and the point p = (1,2).
- We have $\nabla f(x,y) = (4xy y + 2, 2x^2 x 4y 15)$.
- $\nabla f(1,2) = (8,-22)$.
- Thus, the tangent plane to the graph of the function f at the point (p, f(p)) is

$$z = f(1,2) + \nabla f(p) \cdot (x-1, y-2)$$

= -33 + (8, -22) \cdot (x-1, y-2) =
= -33 + 8(-1+x) - 22(-2+y)