# Session 7 Mathematics for Economics I

#### Chapter 3: Partial Derivatives and Differentiation. Part II

Degrees in Economics, International-Studies-and-Economics and Law-and-Economics

Universidad Carlos III de Madrid

Directional derivatives.

- $D_v f(p) = \lim_{t \to 0} \frac{f(p+tv) f(p)}{t}$  is the <u>derivative</u> of f at p along (the vector) v.
- If ||v|| = 1, then D<sub>v</sub>f(p) is the <u>directional derivative</u> of f at p in the direction of (the vector) v.

• 
$$f(x, y) = xy$$
,  $p = (1, -1)$ ,  $v = (3, 4)$ . Then,  
 $p + tv = (1 + 3t, -1 + 4t)$  and

$$egin{aligned} D_{ extsf{v}}f(p) &= \lim_{t o 0}rac{f(1+3t,-1+4t)-f(1,-1)}{t} \ &= \lim_{t o 0}rac{(1+3t)(-1+4t)+1}{t} = 1 \end{aligned}$$

• And, since  $||v|| = \sqrt{3^2 + 4^2} = 5$ , the directional derivative of f at p in the direction of v is  $\frac{1}{||v||} D_v f(p) = \frac{1}{5}$ .

### Directional derivatives and the gradient.

- If  $f: D \to \mathbb{R}$  is differentiable at  $p \in D$ , then  $D_v f(p) = \nabla f(p) \cdot v$ .
- Let f(x, y) = xy, p = (1, -1), v = (3, 4). Then,  $\nabla f(p) = (y, x) \Big|_{\substack{x=1 \ y=-1}} = (-1, 1)$  and  $D_v f(p) = \nabla f(p) \cdot v = (-1, 1) \cdot (3, 4) = -3 + 4 = 1.$

Interpretation of the gradient.

• 
$$D_v f(p) = \nabla f(p) \cdot v = \|\nabla f(p)\| \|v\| \cos \theta$$
, where



- Thus,  $D_v f(p)$ 
  - ▶ attains a maximum when  $\theta = 0$ , that is, when the vectors  $\nabla f(p)$  and v point in the same direction.
  - ▶ attains a minimum when  $\theta = \pi$ , that is, when the vectors  $\nabla f(p)$  and v point in the opposite directions.
  - ▶ is zero when  $\theta = \pi/2$  or  $\theta = 3\pi/2$ , that is, when the vectors  $\nabla f(p)$  and v are perpendicular.

## Interpretation of the gradient.

- The function f grows the fastest in the direction of  $\nabla f(p)$ .
- The function f decreases the fastest in the direction opposite to  $\nabla f(p)$ .
- Suppose c = f(p).  $\nabla f(p)$  is perpendicular to the level surface/curve given by f(x) = c. The function f remains constant if we move along a curve that is perpendicular to  $\nabla f(p)$ .

医下颌 医下颌

- Consider a consumer with utility function *u*. Then,
  - The gradient ∇u(p) points towards the bundles of goods which are preferred to p.
  - 2 The gradient ∇u(p) is perpendicular to the line tangent to the indifference curve that goes through p.



- Consider the function  $f(x, y, z) = 8x^2 + 4xz + 8x + y^4 + 32y + z^2 + 16$  defined in  $\mathbb{R}^3$ .
- We compute  $D_v f(-1, 0, 1)$  for v=(2, 1, -1).
- We have

$$\nabla f(x, y, z) = (16x + 4z + 8, 4y^3 + 32, 4x + 2z)$$

• Since, 
$$\nabla f(-1, 0, 1) = (-4, 32, -2)$$
,

• we obtain  $D_v f(-1,0,1) = (-4,32,-2) \cdot (2,1,-1) = 26$ .

(4月) (3日) (3日) 日

- Consider the function  $f(x, y, z) = ye^{xz} x^2 yz^2$ , defined in  $\mathbb{R}^3$ .
- We compute the gradient of f at the point p = (0,1,1) and determine for what values of a, b, c we have that D<sub>v</sub>f(p) = 0.
- We have

$$\nabla f(x, y, z) = (yze^{xz} - 2x, e^{xz} - z^2, xye^{xz} - 2yz)$$

So,

$$\nabla f(0,1,1) = (1,0,-2)$$

Therefore

$$D_v f(p) = \nabla(p) \cdot v = (1,0,-2) \cdot (a,b,c) = a - 2c$$

• And  $D_v f(p) = 0$  iff a = 2c with  $b, c \in \mathbb{R}$  arbitrary.

Consider the function f(x, y) = x<sup>2</sup> + y<sup>2</sup>, defined in ℝ<sup>2</sup> and the level curve S given by x<sup>2</sup> + y<sup>2</sup> = 5. Let us compute the tangent line at the point p = (1,2) ∈ S.

• 
$$\nabla f(x,y) = (2x,2y), \ \nabla f(x,y) = (2,4)$$

The equation of the tangent line to the curve x<sup>2</sup> + y<sup>2</sup> = 5 at the point p = (1,2) ∈ S is given by

$$(2,4) \cdot (x-2,y-4) = 0$$