# Session 5 Mathematics for Economics I

#### Continuous Functions of several variables. Extreme points

Degrees in Economics, International Studies-Economics and Law-Economics

Universidad Carlos III de Madrid

### Extreme points.

Let  $f: D \subset \mathbb{R}^n \to \mathbb{R}$ . We say that a point  $p \in D$  is a

- global maximum of f on D if  $f(x) \le f(p)$ , for any other  $x \in D$ .
- global minimum of f on D if  $f(x) \ge f(p)$ , for any other  $x \in D$ .
- local maximum of f on D if there is some  $\delta > 0$  such that  $f(x) \le f(p)$ , for every  $x \in D \cap B(p, \delta)$ .
- local minimum of f on D if there is some  $\delta > 0$  such that  $f(x) \ge f(p)$ , for every  $x \in D \cap B(p, \delta)$ .

**Remark:** The correct way of phrasing the previous definitions is perhaps: 'On D the function f attains a global maximum at the point p', etc. But, we will use the above shorter wording.

- 4 同 2 4 日 2 4 日 2 - 日

## Extreme points.



Continuous Functions of several variables. E

Mathematics for Economics I

Universidad Carlos III de Madrid 3 / 17

<ロ> < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

# Weierstrass' Theorem

#### Theorem

Let  $D \subset \mathbb{R}^n$  be a compact subset of  $\mathbb{R}^n$  and let  $f : D \to \mathbb{R}$  be continuous. Then, there are  $x_0, x_1 \in D$  such that for any  $x \in D$ 

$$f(x_0) \leq f(x) \leq f(x_1)$$

That is,  $x_0$  is a global minimum of f on D and  $x_1$  is a global maximum of f on D.

- Using the level curves, it is possible to find the extreme points of a function *f* in a set *S*.
- We explain this in two dimensions.
- Let f be a function of two variables.
- Let  $S \subset \mathbb{R}^2$ .
- We want to find the maximum and minimum values of f on S.
- Suppose  $S = \{(x, y) \in \mathbb{R}^2 : g(x, y) \le 0\}$  and  $\partial S = \{(x, y) \in \mathbb{R}^2 : g(x, y) = 0\}.$



- In green we have the level curves of the function *f*. For simplicity, they are depicted as straight lines.
- The red arrow indicates the direction of growth of the level curves. That is  $c_1 < c_2 < \cdots < c_8$ .



- Neither the maximum nor the minimum values can be attained a level curve that intersects  $\partial S$  at two points.
- For example, moving from a point in the level of curve  $c_5$  to a point in the level of curve  $c_6$  increases the value of f. And moving from a point in the level of curve  $c_5$  to a point in the level of curve  $c_4$ decreases the value of f.



- The maximum value is  $c_7$ . It is attained at a point where the level curve is tangent to the curve g = 0.
- The minimum value is  $c_2$ . It is attained at a point where the level curve is tangent to the curve g = 0.

Continuous Functions of several variables. E

- The same idea works in any dimension. For example, Let f be a function of thee variables and  $S \subset \mathbb{R}^3$ .
- We want to find the maximum and minimum values of f on S.
- Suppose  $S = \{(x, y, z) \in \mathbb{R}^3 : g(x, y, z) \leq 0\}$  and  $\partial S = \{(x, y, z) \in \mathbb{R}^3 : g(x, y, z) = 0\}$ . Note that now  $\partial S$  is a surface in  $\mathbb{R}^3$ .



- For simplicity, he level curves of the function *f* are depicted as planes in  $\mathbb{R}^3$ .
- The red arrow indicates the direction of growth of the level curves. That is,  $c_1 < c_2 < \cdots < c_5$ .



- Neither the maximum nor the minimum values can be attained a level curve that intersects  $\partial S$  at a curve.
- For example, moving from a point in the level of curve  $c_3$  to a point in the level of curve  $c_4$  increases the value of f. And moving from a point in the level of curve  $c_3$  to a point in the level of curve  $c_2$ decreases the value of f.



- The maximum value is  $c_5$ . It is attained at a point where the level curve is tangent to the surface g = 0.
- The minimum value is  $c_1$ . It is attained at a point where the level curve is tangent to the surface g = 0.

Continuous Functions of several variables. E

- Consider the set  $A = \{(x, y) \in \mathbb{R}^2 : 16x^2 + y^2 \le 100\}$  and the function f(x, y) = y 3x.
- The function is continuous and the set A is closed. It is also bounded and hence the set A is compact.
- Therefore, the function f attains a maximum and a minimum on A.
- The level curves of f are lines of the form y = 3x + C. Graphically,



# Example 1.

• The maximum and the minimum value are attained at the point  $(x_0, y_0)$  where the line y = 3x + C is tangent to the graph of  $16x^2 + y^2 = 100$ .



Consider the set  $A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 2\}$  and the function  $f(x, y) = \frac{1}{x+y}$ . The graph of f is



The function f is continuous except in the set  $X = \{(x, y) \in \mathbb{R}^2 : x + y = 0\}$ . This set intersects A,



and we conclude that f attains neither a maximum nor a minimum on the set A.

Continuous Functions of several variables. E

# Example 3.

Consider the set  $B_1 = \{(x, y) \in \mathbb{R}^2 : xy \ge 1, x, y > 0\}$  and function  $f(x, y) = \frac{1}{x+y}$ .

- The function  $f(x, y) = \frac{1}{x+y}$  is continuous on  $B_1$ , because if y = -x, then  $xy = -x^2 \le 0$ .
- The set  $B_1$  is closed but not bounded. Hence, it is not compact.
- We may not apply Weierstrass' theorem.
- On the one hand, we see that f(x, y) > 0 in the set  $B_1$ .
- In addition, the points (n, n) for  $n = 1, 2, \ldots$  belong to the set  $B_1$  and

$$\lim_{n\to+\infty}f(n,n)=0$$

• Hence, given a point  $p \in B_1$ , we may find a natural number n large enough such that

$$f(p) > f(n,n) > 0$$

And we conclude that f does not attain a minimum in the set  $B_1$ .

- On the other hand, the level curves function are the straight lines  $x + y = \frac{1}{c}$ .
- Graphically, we see that f attains the maximum value at the point p = (a, b) where the line  $x + y = \frac{1}{c}$  is tangent to the curve xy = 1.



- The slope of the line  $x + y = \frac{1}{c}$  is m = -1. Why?
- The point p = (a, b) is on the curve xy = 1. Hence, ab = 1
- To compute the tangent line at p = (a, b) we differentiate implicitly xy = 1 to obtain y + xy' = 0.
- We plug in y' = -1, x = a, y = b and get b a = 0.
- We have a = b, ab = 1 and a, b > 0. Thus, a = b = 1.
- The maximum value is attained at the point (1,1).