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Limits of functions.

Definition

Let f : D ⊂ Rn → R and let L ∈ R, p ∈ Rn. We say that

lim
x→p

f (x) = L

if given ε > 0 there is some δ > 0 such that

|f (x)− L| < ε

whenever 0 < ∥x − p∥ < δ.

This is the natural generalization of the concept of limit for
one-variable functions to functions of several variables, once we
remark that the distance | · | in R is replaced by the distance ∥ · ∥ in
Rn).
The interpretation is the same, i.e., |x − y | is the distance from x to
y in R and ∥x − y∥ is the distance from x to y in Rn.
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Remarks about limits.

The limit of a function at a point does not always exist.

If the limit exists, it is unique.

The calculus of limits with several variables is more complicated than
the calculus of limits with one variable.
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Showing that the limit exists. The easy cases

Proposition (4)

Suppose f is a function of the following type:

1 A polynomial, or an absolute value, or an exponential function, or a
logarithm, or a trigonometric function or an irrational function.

2 A composition or an algebraic combination of the above functions.

Let p be in the domain of f . Then

lim
x→p

f (x) = f (p)
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Example

Let f (x , y) = xy2+e2x−y+ln(x2+y)
x2y

. Then

lim
(x ,y)→(1,2)

f (x) =
xy2 + e2x−y + ln(x2 + y)

x2y

∣∣∣∣
x=1,y=2

=
4 + e0 + ln(1 + 2)

2

=
5 + ln 3

2
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Two useful tools to show that the limit exists.
The following results will be in proving that a limit exists.

Proposition

(Squeeze Theorem) Let f , g , h : Rn → R and suppose

1 g(x) ≤ f (x) ≤ h(x) for every x in some open disc centered at p.

2 limx→p g(x) = limx→p h(x) = L.

Then,
lim
x→p

f (x) = L

Proposition

The following inequalities hold.

1 |xy | ≤ 1
2

(
x2 + y2

)
≤ x2 + y2.

2 |x | =
√
x2 ≤

√
x2 + y2.

3 |y | =
√

y2 ≤
√
x2 + y2.
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Example

Consider the function f (x , y) =

{
(x2 + y2) cos( 1

x2+y2 ) if (x , y) ̸= (0, 0),

0 if (x , y) = (0, 0).
.

Note that for (x , y) ̸= (0, 0):
∣∣∣cos( 1

x2+y2

∣∣∣ ≤ 1.

Thus, 0 ≤ |f (x , y)| ≤ x2 + y2.

In the previous proposition we take g(x , y) = 0, h(x , y) = x2 + y2.

We have lim(x ,y)→(0,0) g(x , y) = lim(x ,y)→(0,0) h(x , y) = 0.

We conclude lim(x ,y)→(0,0) f (x , y) = 0.
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Example

Consider the function f (x , y) =

{
xy√
x2+y2

if (x , y) ̸= (0, 0)

0 if (x , y) = (0, 0)
.

Note that |xy | ≤
√
x2 + y2

√
x2 + y2 = x2 + y2. And, for

(x , y) ̸= (0, 0):

0 ≤
∣∣∣∣ xy√

x2+y2

∣∣∣∣ ≤ x2+y2√
x2+y2

=
√
x2 + y2.

Thus, 0 ≤ |f (x , y)| ≤
√

x2 + y2.

In the previous proposition we take g(x , y) = 0, h(x , y) =
√
x2 + y2.

We have lim(x ,y)→(0,0) g(x , y) = lim(x ,y)→(0,0) h(x , y) = 0.

We conclude lim(x ,y)→(0,0) f (x , y) = 0.
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Example

Let us consider the function

f (x , y) =

{
xy√
x2+y2

if (x , y) ̸= (0, 0)

0 if (x , y) = (0, 0)

Does lim(x ,y)→(0,0) f (x , y) exist?

Consider the functions

g(x , y) = 0, h(x , y) =
√
x2 + y2

By Proposition 4, we have
lim(x ,y)→(0,0) g(x , y) = lim(x ,y)→(0,0) h(x , y) = 0.
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Example

On the other hand,

|f (x , y)| =

∣∣∣∣∣ xy√
x2 + y2

∣∣∣∣∣ ≤
√

x2 + y2
√
x2 + y2√

x2 + y2
=

√
x2 + y2

So, g(x , y) ≤ |f (x , y)| ≤ h(x , y)

By the Squeeze Theorem, lim(x ,y)→(0,0) |f (x , y)| = 0.

And, since, −|f (x , y)| ≤ f (x , y) ≤ |f (x , y)|, we apply again the
Squeeze Theorem to conclude that

lim
(x ,y)→(0,0)

f (x , y) = 0
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Some tools to show that the limit does not exist: Iterated
limits

Suppose that lim(x ,y)→(a,b) f (x , y) = L and that the following
one-dimensional limits

lim
x→a

f (x , y)

lim
y→b

f (x , y)

exist for (x , y) in a ball around (a, b).
Define the functions

g1(y) = lim
x→a

f (x , y) g2(x) = lim
y→b

f (x , y)

Then,

lim
x→a

(
lim
y→b

f (x , y)

)
= lim

x→a
g2(x) = L

lim
y→b

(
lim
x→a

f (x , y)
)
= lim

y→b
g1(y) = L
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Iterated limits

If we know beforehand that it exists, we may use the iterated limits to
compute its value.

Or, if for some function f (x , y) we can prove that

lim
x→a

lim
y→b

f (x , y) ̸= lim
y→b

lim
x→a

f (x , y)

then lim(x ,y)→(a,b) f (x , y) does not exist.

However, iterated limits may not be used to prove that a limit
exists.
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Iterated limits. Example
Consider the function,

f (x , y) =

{
x2−y2

x2+y2 if (x , y) ̸= (0, 0),

0 if (x , y) = (0, 0).

Note that

lim
x→0

lim
y→0

f (x , y) = lim
x→0

f (x , 0) = lim
x→0

x2

x2
= 1

But,

lim
y→0

lim
x→0

f (x , y) = lim
y→0

f (0, y) = lim
y→0

−y2

y2
= −1

Hence, the limit

lim
(x ,y)→(0,0)

x2 − y2

x2 + y2

does not exist.
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Other tools to show that a limit does not exist. Limits
through curves.

Proposition

Let p ∈ D ⊂ Rn and f : D ⊂ Rn → R. Consider a curve σ : [−ε, ε] → D
such that σ(0) = p σ(t) ̸= p whenever t ̸= 0 and limt→0 σ(t) = p.
Suppose, limx→p f (x) = L. Then,

lim
t→0

f (σ(t)) = L
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Limits through curves. Example
Consider the function,

f (x , y) =

{
xy

x2+y2 if (x , y) ̸= (0, 0),

0 if (x , y) = (0, 0).

Note that the iterated limits

lim
x→0

lim
y→0

f (x , y) = lim
x→0

0

x2
= 0

lim
y→0

lim
x→0

f (x , y) = lim
y→0

0

y2
= 0

coincide.

But, if we consider the curve, σ(t) = (t, t), the limit

lim
t→0

f (σ(t)) = lim
t→0

f (t, t) = lim
t→0

t2

2t2
=

1

2

does not coincide with the value of the iterated limits.

Hence, the limit lim(x ,y)→(0,0)
xy

x2+y2 does not exist.
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Limits through curves. Example
Consider the function,

f (x , y) =

{
x2y

x4+y2 if (x , y) ̸= (0, 0),

0 if (x , y) = (0, 0).

Note that the iterated limits

lim
x→0

lim
y→0

f (x , y) = lim
x→0

f (x , 0) = lim
x→0

0

x4
= 0

and

lim
y→0

lim
x→0

f (x , y) = lim
y→0

f (0, y) = lim
y→0

0

y2
= 0

coincide.
But, if we consider the curve, σ(t) = (t, t2), the limit

lim
t→0

f (t, t2) = lim
x→0

f (t, t2) = lim
t→0

t4

t4 + t4
=

1

2

does not coincide with the value of the iterated limits.
Hence, the limit lim(x ,y)→(0,0)

x2y
x4+y2 does not exist.
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Algebra of limits

Consider two functions f , g : D ⊂ Rn → R and suppose

lim
x→p

f (x) = L1, lim
x→p

g(x) = L2

Then,

1 limx→p (f (x) + g(x)) = L1 + L2.

2 limx→p (f (x)− g(x)) = L1 − L2.

3 limx→p f (x)g(x) = L1L2.

4 If a ∈ R then limx→p af (x) = aL1.

5 If, in addition, L2 ̸= 0, then

lim
x→p

f (x)

g(x)
=

L1
L2
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