Session 2 Mathematics for Economics I

Functions of several variables

Degrees in Economics, International Studies and Economics and Law and Economics

Universidad Carlos III de Madrid

э

Examples of functions $f : \mathbb{R}^n \to \mathbb{R}$.

- $f : \mathbb{R}^2 \to \mathbb{R}$ defined by f(x, y) = x + y 1.
- $f : \mathbb{R}^3 \to \mathbb{R}$ defined by $f(x, y, z) = x^2 + y^2 + \sqrt{1 + z^2}$.
- $f : \mathbb{R}^3 \to \mathbb{R}$ defined by $f(x, y, z) = z \exp x^2 + y^2$.
- $f : \mathbb{R}^4 \to \mathbb{R}$ defined by $f(x, y, z, t) = \sin x + y + z \exp t$.

Functions $f : \mathbb{R}^n \to \mathbb{R}^m$

- For example, $f : \mathbb{R}^3 \to \mathbb{R}^2$ defined by $f(x, y, z) = (x \exp y + \sin z, x^2 + y^2 - z^2).$
- We may write $f(x, y, z) = (f_1(x, y, z), f_2(x, y, z))$ with $f_1(x, y, z) = x \exp y + \sin z$, $f_2(x, y, z) = x^2 + y^2 z^2$
- So, we may just focus on functions $f : \mathbb{R}^n \to \mathbb{R}$.

Implicit Domain

- When we write, for example, $f(x, y) = \frac{\sqrt{x+y+1}}{x-1}$ it is understood that $x \neq 1$.
- The expression of *f* defines implicitly the domain of the function.
- For the above function we need that $x + y + 1 \ge 0$ and $x \ne 1$.
- So, we assume implicitely that the domain of $f(x, y) = \frac{\sqrt{x+y+1}}{x-1}$ is the set $D = \{(x, y) \in \mathbb{R}^2 : x + y \ge -1, x \ne 1\}.$
- Usually, we will write $f: D \subset \mathbb{R}^n \to \mathbb{R}$ to make explicit the domain of f.

Graph of a function of several variables.

- The graph of $f : D \subset \mathbb{R}^n \to \mathbb{R}$ is $G(f) = \{(x, y) \in \mathbb{R}^{n+1} : y = f(x), x \in D\}.$
- The graph can be drawn only for n = 1, 2.
- The graph of $f(x, y) = x^2 + y^2$ is

The graph of $f(x, y) = -x^2 + y^2$ is

イロト イヨト イヨト

э

The graph of f(x, y) = 2x + 3y is

э

<ロト < 同ト < ヨト < ヨト

Level curves and level surfaces

- Given f : D ⊂ ℝⁿ → ℝ and k ∈ ℝ we define the level surface of f as the set C_k = {x ∈ D : f(x) = k}.
- If n = 2, the level surface is called a **level curve**.
- Example. The level curves of $f(x, y) = x^2 + y^2$ are

• The arrows point in the direction in which the function f grows.

Functions of several variables (Chapter 2)

- 3

• The level curves of $f(x, y) = x^2 - y^2$ are

• The arrows point in the direction in which the function f grows.

< A > <

• The level curves of f(x, y) = 2x + 3y are

• The arrows point in the direction in which the function f grows.

э

• For $c \ge 0$, the level curves of $f(x, y) = (2x + 3y)^2$ are given by

$$(2x+3y)^2=c$$

That is,

$$2x + 3y = \pm \sqrt{c}$$

We obtain two lines

$$y = -\frac{2}{3}x + \sqrt{c}$$
 and $y = -\frac{2}{3}x - \sqrt{c}$

graphically,

• And the graph is the following

Functions of several variables (Chapter 2)

Universidad Carlos III de Madrid 12 / 12