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Quadratic forms.
A quadratic form of order n is a function Q : Rn → R of the form

Q(x1, x2, . . . , xn) =
n∑

i ,j=1

aijxixj

for some real numbers aij ∈ R i , j = 1, . . . , n

Q(x , y , z) = x2 − 2xy + 4xz + 6yz + 5z2.

In matrix notation,

Q(x , y , z) =
(
x y z

) 1 −1 2
−1 0 3
2 3 5

x
y
z

 =

= x2 − 2xy + 4xz + 6yz + 5z2

There is a unique way if we require that the associated matrix to be
symmetric.

Quadratic forms. (Chapter 12) Mathematics for Economics II Universidad Carlos III de Madrid 2 / 20



.

Every quadratic form Q : Rn → R, can be written in a unique way
Q(x) = xAx t with A = At a symmetric matrix.

Observe that the symmetric matrix

A = (aij)

is associated with the following quadratic form

Q(x) =
n∑

i ,j=1

aijxixj =
n∑

i=1

aiix
2
i + 2

∑
1≤i<j≤n

aijxixj

We will identify the quadratic form Q(x) = xAx t with the matrix A.
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Classification of quadratic forms.

A quadratic form Q : Rn → R is

1 Positive definite if Q(x) > 0 for every x ∈ Rn, x ̸= 0.

2 Negative definite if Q(x) < 0 for every x ∈ Rn, x ̸= 0.

3 Positive semidefinite if Q(x) ≥ 0 for every x ∈ Rn and Q(x) = 0 for
some x ̸= 0.

4 Negative semidefinite if Q(x) ≤ 0 for every x ∈ Rn and Q(x) = 0
for some x ̸= 0.

5 Indefinite if there are some x , y ∈ Rn such that Q(x) > 0 and
Q(y) < 0.
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Classification of quadratic forms.

Definite positive

Definite negative

Semidefinite positive

Semidefinite negative

indefinite
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Examples.

Q1(x , y , z) = x2 + 3y2 + z2 is positive definite.

Q2(x , y , z) = −2x2 − y2 is negative semidefinite.

Q3(x , y) = −2x2 − y2 is negative definite.

Q4(x , y , z) = x2 − y2 + 3z2 is indefinite.

The previous quadratic forms are easy to classify because they are in
diagonal form, i.e.

Q1 ⇔

1 0 0
0 3 0
0 0 1

 Q2 ⇔

−2 0 0
0 −1 0
0 0 0



Q3 ⇔
(
−2 0
0 −1

)
Q4 ⇔

1 0 0
0 −1 0
0 0 3
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Classification of diagonal quadratic forms.

Proposition

Consider the matrix A =


λ1 0 0 · · · 0
0 λ2 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · λn

. Then, the quadratic

form Q(x) = xAx t = λ1x
2
1 + λ2x

2
2 + · · ·+ λnx

2
n is

1 positive definite if and only if λi > 0 for every i = 1, 2, . . . , n;

2 negative definite if and only if λi < 0 for every i = 1, 2, . . . , n;

3 positive semidefinite if and only if λi ≥ 0 for every i = 1, 2, . . . , n
and λk = 0 for some k = 1, 2, . . . , n;

4 negative semidefinite if and only if λi ≤ 0 for every i = 1, 2, . . . , n
and λk = 0 for some k = 1, 2, . . . , n;

5 indefinite if and only if there is some λi > 0 and some λi < 0.
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Leading Principal minors. |A| ≠ 0

Let A =


a11 a12 · · · a14
a12 a22 · · · a24
...

...
. . .

...
a1n a2n · · · ann

 be a symmetric matrix.

The leading principal minors are

D1 = a11, D2 =

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ , D3 =

∣∣∣∣∣∣
a11 a12 a13
a12 a22 a23
a13 a23 a33

∣∣∣∣∣∣ , . . . , Dn = |A|

Suppose that |A| ≠ 0. Then,
1 A is positive definite if and only Di > 0 for every i = 1, 2, . . . , n;
2 A is negative definite if and only (−1)iDi > 0 for every i = 1, 2, . . . , n;
3 if and (1) and (2) do not hold, then Q is indefinite.
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Example.

Consider the quadratic form
Q(x , y , z) = x2 + 2xy − 2xz − 2y2 + 4yz + 3z2.

The associated matrix is  1 1 −1
1 −2 2

−1 2 3


D1 = 2 > 0, D2 =

∣∣∣∣ 1 1
1 −2

∣∣∣∣ = −3 < 0.

The quadratic form is indefinite.
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Example.

Consider the quadratic form Q(x , y , z) = 2x2 +2xy + y2 +2yz +3z2.

The associated matrix is  2 1 0
1 1 1
0 1 3



D1 = 2 > 0, D2 =

∣∣∣∣ 2 1
1 1

∣∣∣∣ = 1 > 0, D3 =

∣∣∣∣∣∣
2 1 0
1 1 1
0 1 3

∣∣∣∣∣∣ = 1 > 0.

The quadratic form is positive definite.
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Example.

Consider the quadratic form
Q(x , y , z) = −2x2 + 2xy − 3y2 + 2yz − z2.

The associated matrix is  −2 1 0
1 −3 1
0 1 −1


D1 = −2 < 0, D2 =

∣∣∣∣ −2 1
1 −3

∣∣∣∣ = 5 > 0,

D3 =

∣∣∣∣∣∣
−2 1 0
1 −3 1
0 1 −1

∣∣∣∣∣∣ = −3 < 0.

The quadratic form is negative definite.
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Leading Principal minors. |A| = 0
.

Proposition

Let Q(x) = xAx t with A symmetric and suppose Dn = 0 and
D1 ̸= 0,D2 ̸= 0, . . . ,Dn−1 ̸= 0. Then A is

1 positive semidefinite if and only D1,D2, . . . ,Dn−1 > 0;

2 negative semidefinite if and only
D1 < 0,D2 > 0, . . . , (−1)n−1Dn−1 > 0;

3 indefinite otherwise.

Example: Let Q(x , y) = x2 + 4xy + 4y2. The associated matrix is(
1 2
2 4

)
D1 = 1 > 0, D2 =

∣∣∣∣ 1 2
2 4

∣∣∣∣ = 0.

The quadratic form is positive semidefinite.
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Other cases.

Consider the matrix 1 0 0
0 0 0
0 0 a


We see that D1 = 1, D2 = D3 = 0. Our previous methods do not
apply.

The associated quadratic form is positive semidefinite if and only if
a ≥ 0 and indefinite if and only if a < 0.

If we exchange the variables y and z then the associated matrix
becomes 1 0 0

0 a 0
0 0 0


and then, the above propositions apply.
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Principal centered minors.

A principal centered minor of order k is the determinant of a
submatrix obtained by deleting same n − k rows and columns.
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Principal centered minors. Example

A

a11 a12 a13
a12 a22 a23
a13 a23 a13


1 The 1× 1 principal centered minors of A are:

▶ a11 (obtained by deleting rows and columns 2 and 3).
▶ a22 (obtained by deleting rows and columns 1 and 3); and
▶ a33 (obtained by deleting rows and columns 1 and 2).

2 The 2× 2 principal centered minors are:

▶

∣∣∣∣a22 a23
a23 a33

∣∣∣∣, obtained by deleting row and column 1.

▶

∣∣∣∣a11 a13
a13 a33

∣∣∣∣, obtained by deleting row and column 2; and

▶

∣∣∣∣a11 a12
a21 a22

∣∣∣∣, obtained by deleting row and column 3.

3 The only 3× 3 principal centered minor of A is |A|.
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Principal minors. Example

The possible chains of leading principal centered minors are:

1 D1 = a11, D2 =

∣∣∣∣a11 a13
a13 a33

∣∣∣∣, D3 = |A|.

2 D1 = a11, D2 =

∣∣∣∣a11 a12
a21 a22

∣∣∣∣, D3 = |A|.

3 D1 = a22, D2 =

∣∣∣∣a22 a23
a23 a33

∣∣∣∣, D3 = |A|.

4 D1 = a22, D2 =

∣∣∣∣a11 a12
a21 a22

∣∣∣∣, D3 = |A|.

5 D1 = a33, D2 =

∣∣∣∣a22 a23
a23 a33

∣∣∣∣, D3 = |A|.

6 D1 = a33, D2 =

∣∣∣∣a11 a13
a13 a33

∣∣∣∣, D3 = |A|.
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Proposition

Proposition 12 still holds if we replace the chain of leading principal
minors by any other chain consisting of principal centered minors.
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Example.

Example

Let Q(x , y , z) = x2 − 2xy − 2xz + y2 + 2yz + 2z2

A =

 1 −1 −1
−1 1 1
−1 1 2


We have D2 = D3 = 0. We consider the chain of principal minors

1 (1, 2), D1 = 2.

2 (1), D2 =

∣∣∣∣ 1 1
1 2

∣∣∣∣ = 1.

3 D3 = |A| = 0.

So, the associated quadratic form is positive semidefinite.
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Example.

Example

Let Q(x , y , z) = x2 − 2xy − 2xz + y2 + 2yz . The associated matrix is

A =

 1 −1 −1
−1 1 1
−1 1 0


We have D2 = D3 = 0. We consider the chain of principal minors

1 (2, 3), D1 = 1.

2 (2), D2 =

∣∣∣∣ 1 −1
−1 0

∣∣∣∣ = −1.

3 D3 = |A| = 0.

So, the associated quadratic form is indefinite.
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Remark.

The methods above are especially useful for symmetric 2× 2 matrices.

For example if A is 2× 2 matrix and |A| < 0, then the associated
quadratic form is indefinite.

Why?
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