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Indifference curves.
Two consumption goods and a consumer with a differentiable utility
function u(x , y).
The indifference curves of u are the level sets
{(x , y) ∈ R2 : x , y > 0, u(x , y) = C}.
Suppose ∂u

∂x > 0 ∂u
∂y > 0.

By the implicit function Theorem the equation u(x , y) = C defines a
function of x .
The set {(x , y) ∈ R2 : x , y > 0, u(x , y) = C} may be represented
as the graph of the function y(x).

y(x)

{ (x,y) : u(x,y) =  C }

a

y(a)
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Indifference curves.

Differentiating implicitly,

∂u

∂x
+

∂u

∂x
y ′(x) = 0

Hence,

y ′(x) = − ∂u/ ∂x

∂u/ ∂y

y(x) is a decreasing function.

The marginal rate of substitution is

MRS(x , y) = |y ′(x)| = ∂u/ ∂x

∂u/ ∂y
(x , y)

MRS measures (approximately) the maximum amount of good y that
the agent would be willing to exchange for an additional consumption
of one unit of good x .
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MRS.

Let u(x , y) = x2y4.

The marginal rate of substitution is

MRS(x , y) =
∂u/ ∂x

∂u/ ∂y
=

2xy4

4x2y3
=

y

2x

Differentiability. Part VI: Applications of the Implicit Function Theorem. Taylor’s Approximations. (Chapter 11)Mathematics for Economics II Universidad Carlos III de Madrid 4 / 17



Indifference curves.

The slope of the straight line tangent to the graph of y(x) at the
point (a, y(a)) is y ′(a)

That is, the director vector of the straight line tangent to the graph
of y(x) at the point (a, y(a)) is the vector (1, y ′(a)).

And

(1, y ′(a)) · ∇u(a, y(a)) =

(
1,− ∂u/ ∂x

∂u/ ∂y

)
·
(
∂u

∂x
,
∂u

∂y

)
= 0
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Indifference curves.

The gradient vector ∇u is perpendicular to the straight line tangent
the indifference curve of the consumer.

a

y(a)

y(x)

{ (x,y) : u(x,y) =  C }

∇∇∇∇ u(a,y(a))
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Indifference curves.
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Demand function of a consumer.

Suppose that there are two consumption goods and the agent has
preferences over theses which might be represented by a utility
function u(x , y).

Suppose the prices of the goods are px and py . Consuming the
bundle (x , y) costs

pxx + pyy

to the agent.

If his income is I then
pxx + pyy = I

That is, if the agent buys x units of the first good, then the
maximum amount he can consume of the second good is

I

py
− px

py
x
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Demand function of a consumer.

So, his utility is

u

(
x ,

I

py
− px

py
x

)
(0.1)

In Economic Theory one assumes that the agent chooses the bundle
of goods (x , y) that maximizes his utility.

That is, the agent maximizes the function u
(
x , I

py
− px

py
x
)

Differentiating implicitly with respect to x we obtain

∂u

∂x
− ∂u

∂y

px
py

= 0 (0.2)
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Demand function of a consumer.

Thus, the first order condition is

MRS(x , y) =
px
py

The above equation together with the budget restriction

pxx + pyy = I

determines the demand of the agent.
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Demand function of a consumer.
For example if the preferences of the consumer may be represented by
a Cobb-Douglas utility function

u(x , y) = x2y

the MRS is

MRS(x , y) =
2xy

x2
=

2y

x
and the demand of the agent is determined by the system of equations

2y

x
=

px
py

pxx + pyy = I

from these we obtain the demand of the agent

x(px , py , I ) =
2I

3px

y(px , py , I ) =
I

3py
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Isoquants and the marginal rate of technical substitution.
Suppose that a firm uses the production function Y = f (x1, x2) where
(x1, x2) are the units of inputs used in manufacturing of Y units of
the product.

Given a fixed level of production ȳ , the corresponding isoquant is the
level set

{(x1, x2) ∈ R2 : x1, x2 > 0, f (x1, x2) = ȳ}

As in the previous exercise, we see that on the isoquants we may
write x2 as a function of x1 and that

x ′2(x1) = − ∂f / ∂x1
∂f / ∂x2

The marginal rate of technical substitution is defined as

RMST = −x ′2(x1) =
∂f / ∂x1
∂f / ∂x2
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Isoquants and the marginal rate of technical substitution.

For example, if the production function of the firm is Y = x
1/3
1 x

1/2
2

then the marginal rate of technical substitution is

RMST =
∂Y / ∂x1
∂Y / ∂x2

=
1
3x

−2/3
1 x

1/2
2

1
2x

1/3
1 x

−1/2
2

=
2x2
3x1
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Taylor polynomial of first order.

Let f ∈ C 1(D), p ∈ D. The Taylor polynomial of first order at p is

P1(x) = f (p) +∇f (p) · (x − p)

If f (x , y) is a function of two variables and p = (a, b), then Taylor’s
first order polynomial for the function f around the point p = (a, b) is
the polynomial

P1(x , y) = f (a, b) +
∂f

∂x
(a, b) · (x − a) +

∂f

∂y
(a, b) · (y − b)

limx→p
f (x)−P1(x)

∥x−p∥ = 0.
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Taylor polynomial of second order.

Let f ∈ C 2(D), p ∈ D. The Taylor polynomial of second order at p is

P2(x) = f (p) +∇f (p) · (x − p) +
1

2
(x − p) H f (p)(x − p)

If f (x , y) is a function of two variables and p = (a, b), then Taylor’s
order polynomial for the function f around the point p = (a, b) is the
polynomial

P2(x , y) = f (a, b) +
∂f

∂x
(a, b)(x − a) +

∂f

∂y
(a, b)(y − b) +

+
1

2

(
∂2f

∂x∂x
(x − a)2 + 2

∂2f

∂x∂y
(x − a)(y − b) +

∂2f

∂y∂y
(y − b)2

)
limx→p

f (x)−P2(x)
∥x−p∥2 = 0.

Differentiability. Part VI: Applications of the Implicit Function Theorem. Taylor’s Approximations. (Chapter 11)Mathematics for Economics II Universidad Carlos III de Madrid 15 / 17



Example.

Let f (x , y) = x3y − xy + 2x + 2y2 − 15y + 1 and p = (−1, 1).

We compute the gradient and the Hessian matrix of the función f at
the point p.

We have

∇f (x , y) =
(
3x2y − y + 2, x3 − x + 4y − 15

)
H f (x , y) =

(
6xy 3x2 − 1

3x2 − 1 4

)
Hence,

∇f (−1, 1) = (4,−11)

H f (−1, 1) =

(
−6 2
2 4

)
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Example.

Taylor’s first order polynomial of the function f at the point p is

P1(x , y) = f (−1, 1)+∇f (p)·(x+1, y−1) = −14+(4,−11)·(x+1, y−1)

= −14 + 4(1 + x)− 11(−1 + y)

Taylor’s second order polynomial of the function f at the point p is

P2(x , y) = f (−1, 1) +∇f (p) · (x + 1, y − 1) +

1

2
(x + 1, y − 1)H f (−1, 1)

(
x + 1
y − 1

)
=

= −14 + (4,−11) · (x + 1, y − 1) +

1

2

(
−6(x + 1)2 + 4(x + 1)(y − 1) + 4(y − 1)2

)
= −3x2 + 2xy − 4x + 2y2 − 13y − 2
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