Session 1 Mathematics for Economics I

The Euclidean space \mathbb{R}^n

Degrees in Economics, International Studies and Economics and Law and Economics

Universidad Carlos III de Madrid

э

- 4 同 6 4 日 6 4 日 6

Scalar product in \mathbb{R}^n .

- Given x = (x₁,...,x_n), y = (y₁,...,y_n) ∈ ℝⁿ,we define their scalar product as x ⋅ y = ⟨x, y⟩ = ∑_{i=1}ⁿ x_iy_i.
- For example, $(2, 1, 3) \cdot (-1, 0, 2) = -2 + 6 = 4$.
- norm: $||x|| = \sqrt{x \cdot x} = \sqrt{x_1^2 + \dots + x_n^2}$, where $x = (x_1, \dots, x_n)$.

• Example:
$$\|(-1, 0, 3)\| = \sqrt{10}$$

- ||x|| is the distance from x to the origin. It is also the length of the vector x.
- ||x y|| is the distance between x and y.
- The angle between u and v. is $\cos \theta = \frac{u \cdot v}{\|u\| \|v\|}$.
- Example: u = (a, a), v = (0, 1). The angle between u and v is π/4 (picture). We also have ||u|| = √2|a|. ||v|| = 1, u ⋅ v = a. So,

$$\cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$$

Open and closed balls.

Let $p \in \mathbb{R}^n$ and r > 0.

- The **open ball** of center p and radius r is $B(p, r) = \{y \in \mathbb{R}^n : ||p y|| < r\}.$
- The closed ball of center p and radius r is $\overline{B(p,r)} = \{y \in \mathbb{R}^n : ||p y|| \le r\}.$
- For *n* = 1, we have that

$$B(p,r) = (p-r, p+r)$$

and

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Open and closed balls.

• For n = 2, 3 the closed balls are

n = 3

Interior of a set.

Let $S \subset \mathbb{R}^n$.

• $p \in \mathbb{R}^n$ is in **interior** of S (and we write $p \in \overset{\circ}{S}$) if there is some r > 0 such that $B(p, r) \subset S$.

• Let $S = [1,2] \times [1,2] \subset \mathbb{R}^2$. Then, $\overset{\circ}{S} = (1,2) \times (1,2)$.

Open sets

- A subset $S \subset \mathbb{R}^n$ is open if $S = \overset{\circ}{S}$
- The open ball B(p, r) is an open set.
- $S=(-1,1)\subset \mathbb{R}$ is open, $T=(-1,1]\subset \mathbb{R}$ is not.
- But $S = \{(x, 0) : -1 < x < 1\}$ is not open in \mathbb{R}^2 .

• $\overset{\circ}{S}$ is the largest open set contained in S. (That is $\overset{\circ}{S}$ is open, $\overset{\circ}{S} \subset S$ and if $A \subset S$ is open, then $A \subset \overset{\circ}{S}$). Examples.

• The closed ball $\overline{B(p,r)}$ is not an open set, because $\overline{B(p,r)} = B(p,r)$.

Closure

Let $S \subset \mathbb{R}^n$.

• $p \in \mathbb{R}^n$ is in the **closure** of *S* (and we write $p \in \overline{S}$) if for any r > 0 we have that $B(p, r) \cap S \neq \emptyset$.

•
$$S = [1,2) \subset \mathbb{R}$$
. Then, $1,2 \in \overline{S}$. But, $3 \notin \overline{S}$.

• $S = B((0,0),1) \subset \mathbb{R}^2$. Then, the point $(1,0) \in \overline{S}$. But, $(1,1) \notin \overline{S}$.

Closed sets

- $F \subset \mathbb{R}^n$ is **closed** if $F = \overline{F}$.
- $[1,2] \subset \mathbb{R}$ is closed. But, the set $[1,2) \subset \mathbb{R}$ is not.
- B(p, r) is closed. But, the set B(p, r) is not.
- $S = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1, x \ne y\}$ is not closed.
- The closure \$\overline{S}\$ of \$S\$ is the smallest closed set that contains \$S\$. (That is \$\overline{S}\$ is closed, \$S ⊂ \$\overline{S}\$ and if \$F\$ is another closed set that contains \$S\$, then \$\overline{S} ⊂ \$F\$).

Boundary.

Let $S \subset \mathbb{R}^n$.

• $p \in \mathbb{R}^n$ is a **boundary point** of *S* if for any positive radius r > 0, we have that,

$$B(p,r) \cap S \neq \emptyset.$$

$$B(p,r) \cap (\mathbb{R}^n \setminus S) \neq \emptyset.$$

• $\partial S = \text{set of boundary points of } S$.

•
$$S = [1,2), T = (1,2).$$
 Then, $\partial S = \partial T = \{1,2\}.$

Examples.

• $S \subset \mathbb{R}^2, S = [1,2] \times [1,2]$. Then, ∂S is

• $S = \{(x, y) \in R^2 : x^2 + y^2 \le 1, x \ne y\}$. Then, $\partial S = \{(x, y) : x^2 + y^2 = 1\} \bigcup \{(x, y) \in R^2 : x^2 + y^2 \le 1, x = y\}.$

I = ►

Useful Remark

- Let $S \subset \mathbb{R}^n$, then
 - $\overset{\circ}{S} = S \setminus \partial S$
 - $\bar{S} = S \cup \partial S$
 - $\partial S = \overline{S} \cap \overline{\mathbb{R}^n \setminus S}$.
 - That is, from \overline{S} it is easy to compute $\overset{\circ}{S}$ and \overline{S} .

Bounded sets.

- A set $S \subset \mathbb{R}^n$ is **bounded** if there is some R > 0 such that $S \subset B(0, R)$.
- Draw some examples.
- A subset S ⊂ ℝⁿ is compact if S is closed and bounded.
 S = {(x, y) ∈ R² : x² + y² ≤ 1, x ≠ y} is not compact (bounded, but not closed).
- B(p, R) is not compact (bounded, but not closed).
- $\overline{B(p,R)}$ is compact.
- (0,1] is not compact. [0,1] is compact.
- $[0,1] \times [0,1]$ is compact.

Convex sets.

- A subset S ⊂ ℝⁿ is convex if for any x, y ∈ S and λ ∈ [0,1] we have that λ ⋅ x + (1 − λ) ⋅ y ∈ S.
- Draw some examples.
- $\{(x,y) \in R^2 : x^2 + y^2 \le 1, x \ne y\}$ is not a convex set.

