CHAPTER 1: INTRODUCTION TO THE TOPOLOGY OF EUCLIDEAN SPACE

1. Scalar product in \mathbb{R}^{n}

Definition 1.1. Given $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$, we define their scalar product as

$$
x \cdot y=\langle x, y\rangle=\sum_{i=1}^{n} x_{i} y_{i}
$$

Example 1.2. $(2,1,3) \cdot(-1,0,2)=-2+6=4$
Remark 1.3. $x \cdot y=y \cdot x$.
Definition 1.4. Given $x=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}$ we define its norm as

$$
\|x\|=\sqrt{x \cdot x}=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}
$$

Example 1.5. Example: $\|(-1,0,3)\|=\sqrt{10}$
Remark 1.6. Some interpretations of the norm are:

- The norm $\|x\|$ is the distance from x to the origin.
- We may also interpret $\|x\|$ as the length of the vector x.
- The norm $\|x-y\|$ is the distance between x and y.

Remark 1.7. Let θ be the angle between u and v. Then,

$$
\cos \theta=\frac{u \cdot v}{\|u\|\|v\|}
$$

2. 1. The Euclidean space \mathbb{R}^{n}

Definition 2.1. Given $p \in \mathbb{R}^{n}$ and $r>0$ we define the open ball of center p and radius r as the set

$$
B(p, r)=\left\{y \in \mathbb{R}^{n}:\|p-y\|<r\right\}
$$

and the closed ball of center p and radius r as the set

$$
\overline{B(p, r)}=\left\{y \in \mathbb{R}^{n}:\|p-y\| \leq r\right\}
$$

Remark 2.2.

- Recall that $\|p-y\|$ is distance from p to y.
- For $n=1$, we have that $B(p, r)=(p-r, p+r)$ and $\overline{B(p, r)}=[p-r, p+r]$.

- For $n=2,3$ the closed balls are

$\mathrm{n}=3$
- For $n=2,3$ the open balls are

$\mathrm{n}=2$

$\mathrm{n}=\mathbf{3}$

Definition 2.3. Let $S \subset \mathbb{R}^{n}$. We say that $p \in \mathbb{R}^{n}$ is interior to S if there is some $r>0$ such that $B(p, r) \subset S$.

Notation: $\stackrel{\circ}{S}$ is set of interior points of S.

Remark 2.4. Note that $\stackrel{\circ}{S} \subset S$ because $p \in B(p, r)$ for any $r>0$.

Example 2.5. Consider $S \subset \mathbb{R}^{2}, S=[1,2] \times[1,2]$. Then, $\stackrel{\circ}{S}=(1,2) \times(1,2)$.

Example 2.6. Consider $S=[-1,1] \cup\{3\} \subset \mathbb{R}$. Then, $\stackrel{\circ}{S}=(-1,1)$.

Example 2.7. Consider $S=[-1,1] \times\{3\} \subset \mathbb{R}^{2}$. Then, $\stackrel{\circ}{S}=\emptyset$.

Definition 2.8. A subset $S \subset \mathbb{R}^{n}$ is open if $S=\stackrel{\circ}{S}$
Example 2.9. In \mathbb{R}, the set $S=(-1,1)$ is open, $T=(-1,1]$ is not.

Example 2.10. The set $S=\{(x, 0):-1<x<1\}$ is not open in \mathbb{R}^{2}.

You should compare this with the previous example

Example 2.11. The open ball $B(p, r)$ is an open set.
Example 2.12. The closed ball $\overline{B(p, r)}$ is not an open set, because $\bar{\circ} \overline{B(p, r)}=B(p, r)$.

Example 2.13. Consider the set $S=\left\{(x, y) \in R^{2}: x^{2}+y^{2} \leq 1, x \neq y\right\}$. Then, $\stackrel{\circ}{S}=\left\{(x, y) \in R^{2}: x^{2}+y^{2}<1, x \neq y\right\}$. So, S is not open.

Proposition 2.14. $\stackrel{\circ}{S}$ is the largest open set contained in S. (That is $\stackrel{\circ}{S}$ is open, $\stackrel{\circ}{S} \subset S$ and if $A \subset S$ is open, then $A \subset \stackrel{\circ}{S})$.

Definition 2.15. Let $S \subset \mathbb{R}^{n}$. A point $p \in \mathbb{R}^{n}$ is in the closure of S if for any $r>0$ we have that $B(p, r) \cap S \neq \emptyset$.

Notation: \bar{S} is the set of points in the closure of S.

Example 2.16. Consider the set $S=[1,2) \subset \mathbb{R}$. Then, the points $1,2 \in \bar{S}$. But, $3 \notin \bar{S}$.

Example 2.17. Consider the set $S=B((0,0), 1) \subset \mathbb{R}^{2}$. Then, the point $(1,0) \in \bar{S}$. But, the point $(1,1) \notin \bar{S}$.

Example 2.18. Let $S=[0,1], T=(0,1)$. Then, $\bar{S}=\bar{T}=S=[0,1]$.
Example 2.19. Let $S=\left\{(x, y) \in R^{2}: x^{2}+y^{2} \leq 1, x \neq y\right\}$. Then, $\bar{S}=\overline{B((0,0), 1)}$.

Example 2.20. $\overline{B(p, r)}$ is the closure of the open unit ball $B(p, r)$.
Remark 2.21. $S \subset \bar{S}$.
Definition 2.22. A set $F \subset \mathbb{R}^{n}$ is closed if $F=\bar{F}$.
Proposition 2.23. A set $F \subset \mathbb{R}^{n}$ is closed if and only if $\mathbb{R}^{n} \backslash F$ is open.
Example 2.24. The set $[1,2] \subset \mathbb{R}$ is closed. But, the set $[1,2) \subset \mathbb{R}$ is not.
Example 2.25. The set $\overline{B(p, r)}$ is closed. But, the set $B(p, r)$ is not.
Example 2.26. The set $S=\left\{(x, y) \in R^{2}: x^{2}+y^{2} \leq 1, x \neq y\right\}$ is not closed.
Proposition 2.27. The closure \bar{S} of S is the smallest closed set that contains S. (That is \bar{S} is closed, $S \subset \bar{S}$ and if F is another closed set that contains S, then $\bar{S} \subset F)$.

Definition 2.28. Let $S \subset \mathbb{R}^{n}$, we say that $p \in \mathbb{R}^{n}$ is a boundary point of S if for any positive radius $r>0$, we have that,
(1) $B(p, r) \cap S \neq \emptyset$.
(2) $B(p, r) \cap\left(\mathbb{R}^{n} \backslash S\right) \neq \emptyset$.

Notation: The set of boundary points of S is denoted by ∂S.

Example 2.29. Let $S=[1,2), T=(1,2)$. Then, $\partial S=\partial T=\{1,2\}$.

Example 2.30. Let $S=[-1,1] \cup\{3\} \subset \mathbb{R}$. Then, $\partial S=\{-1,1,3\}$.

Example 2.31. Let $S \subset \mathbb{R}^{2}, S=[1,2] \times[1,2]$. Then, ∂S is

Example 2.32. $S=\left\{(x, y) \in R^{2}: x^{2}+y^{2} \leq 1, x \neq y\right\}$. Then, $\partial S=\{(x, y):$ $\left.x^{2}+y^{2}=1\right\} \bigcup\left\{(x, y) \in R^{2}: x^{2}+y^{2} \leq 1, x=y\right\}$.

The above concepts are related in the following Proposition.
Proposition 2.33. Let $S \subset \mathbb{R}^{n}$, then
(1) $\stackrel{\circ}{S}=S \backslash \partial S$
(2) $\bar{S}=S \cup \partial S$
(3) $\partial S=\bar{S} \cap \overline{\mathbb{R}^{n} \backslash S}$.
(4) S is closed $\Leftrightarrow S=\bar{S} \Leftrightarrow \partial S \subset S$
(5) S is open $\Leftrightarrow S=\stackrel{\circ}{S} \Leftrightarrow S \cap \partial S=\emptyset$.

Proposition 2.34.
(1) The finite intersection of open (closed) sets is also open (closed).
(2) The finite union of open (closed) sets is also open (closed).

Definition 2.35. A set $S \subset \mathbb{R}^{n}$ is bounded if there is some $R>0$ such that $S \subset B(0, R)$.

Example 2.36. The straight line $V=\left\{(x, y, z) \in \mathbb{R}^{3}: x-y=0, z=0\right\}$ is not a bounded set.

Example 2.37. The ball $B(p, R)$ of center p and radius R is bounded.
Definition 2.38. A subset $S \subset \mathbb{R}^{n}$ is compact if S is closed and bounded.
Example 2.39. $S=\left\{(x, y) \in R^{2}: x^{2}+y^{2} \leq 1, x \neq y\right\}$ is not compact (bounded, but not closed).

Example 2.40. $B(p, R)$ is not compact (bounded, but not closed).
Example 2.41. $\overline{B(p, R)}$ is compact.
Example 2.42. (0,1$]$ is not compact. $[0,1]$ is compact.
Example 2.43. $[0,1] \times[0,1]$ is compact.
Definition 2.44. A subset $S \subset \mathbb{R}^{n}$ is convex if for any $x, y \in S$ and $\lambda \in[0,1]$ we have that $\lambda \cdot x+(1-\lambda) \cdot y \in S$.
Example 2.45. Let A a matrix of order $n \times m$ and let $b \in \mathbb{R}^{m}$. We define

$$
S=\left\{x \in \mathbb{R}^{n}: A x=b\right\}
$$

as the set of solutions of the linear system of equations $A x=b$. Let $x, y \in S$, be two solutions of this linear system of equations. Then, we have that $A x=A y=b$. If we now take any $0 \leq t \leq 1$ (indeed any $t \in \mathbb{R}$) then

$$
A(t x+(1-t) y)=t A x+(1-t) A y=t b+(1-t) b=b
$$

that is, $t x+(1-t) y \in S$ so the set of solutions of a linear system of equations is a convex set.

Example 2.46. $\left\{(x, y) \in R^{2}: x^{2}+y^{2} \leq 1, x \neq y\right\}$ is not a convex set.

