Last Name:	Name:	
ID number:	Degree:	Group:

IMPORTANT

- DURATION OF THE EXAM: 2h
- Calculators are NOT allowed.
- Scrap paper: You may use the last two pages of this exam and the space behind this page.
- Do NOT UNSTAPLE the exam.
- You must show a valid ID to the professor.

Problem	Points
1	
2	
3	
4	
5	
Total	

(1) Consider the set $A=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 25, x+y \geq 5\right.$.
(a) (4 points) Draw the set A, its interior and boundary. Justify if the set A is open, closed, bounded, compact or convex.
(b) (3 points) State Weierstrass' Theorem. Determine if it is possible to apply Weierstrass' Theorem to the function $f(x, y)=x y$ defined on A. Draw the level curves of $f(x, y)=x y$ definided in \mathbb{R}_{+}^{2} and the direction of growth of the level curves.
(c) (3 points) Using the level curves of f above, determine if the function f attains a global maximum and/or a global minimum on the set A. If so, compute the points where the extreme values are attained and the global maximum and/or minimum value(s) of f on the set A.
(2) Consider the function $f(x, y, z)=4 a x^{2}+4 a y^{2}+5 x y+4 x z+2 z^{2}$ defined in \mathbb{R}^{3}, with $a \in \mathbb{R}$.
(a) (6 points) Determine for which values of a the function f is strictly convex. Determine for which values of a the function f is strictly concave.
(b) (4 points) Using the results above, determine if the set $D=\left\{(x, y, z) \in \mathbb{R}^{3}: 4 x^{2}+5 x y+4 x z+\right.$ $\left.4 y^{2}+2 z^{2} \leq 5\right\}$ is convex.
(3) Consider the set of equations

$$
\left.\begin{array}{rl}
x y^{2}-y z^{2}+y z & =1 \\
x e^{2 z}-y^{2} z & =1
\end{array}\right\}
$$

(a) (4 points) Prove that the above set of equations defines implicitly two differentiable functions $y(x)$ and $z(x)$ near the point $(x, y, z)=(1,-1,0)$.
(b) (6 points) Compute

$$
y^{\prime}(1), z^{\prime}(1)
$$

and Taylor's polynomial of order one of the function $y(x)$ at the point $x_{0}=1$. Using that polynomial, find and approximation to the value of $y(0.95)$.
(4) Consider the function $f(x, y)=2 x^{2} y-x y+2 x-2 y^{2}-15 y+1$, the point $p=(1,2)$ and the vector $v=(-1,3)$.
(a) (5 points) Compute the gradient and the Hessian matrix of the función f at the point p. Compute $D_{v} f(p)$.
(b) (5 points) Compute the tangent plane to the graph of the function f at the point $(p, f(p))$. Compute Taylor's polynomial of second order of the function f at the point p.
(5) Consider the function $f(x, y): \mathbb{R}^{2} \longrightarrow \mathbb{R}$ and the functions $x(u, v), y(u, v): \mathbb{R}^{2} \longrightarrow \mathbb{R}$. Consider the composition $h: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ defined by $h(u, v)=f(x(u, v), y(u, v))$.
(a) (2 points) State the chain rule for the case,

$$
\frac{\partial h}{\partial u}, \quad \frac{\partial h}{\partial v}
$$

(b) (5 points) Use the previous part to compute

$$
\frac{\partial h}{\partial u}, \quad \frac{\partial h}{\partial v}
$$

for the functions

$$
f(x, y)=\frac{2 x-y}{x+3 y} \quad \text { and } \quad x(u, v)=-u e^{2 u}, \quad y(u, v)=v^{2} e^{2 u}
$$

at the point $\left(u_{0}, v_{0}\right)=(0,-1)$.
(c) (3 points) Compute the composite function $h(u, v)$, its gradient $\nabla h(u, v)$ and check that $\nabla h(0,-1)$ agrees with the result computed in the preceding part.

