University Carlos III Department of Economics Mathematics I. Final Exam. January 21st 2022

Last Name:		Name:
ID number:	Degree:	Group:

IMPORTANT

- DURATION OF THE EXAM: 2h
- Calculators are **NOT** allowed.
- Scrap paper: You may use the last two pages of this exam and the space behind this page.
- **Do NOT UNSTAPLE** the exam.
- You must show a valid ID to the professor.

Problem	Points
1	
2	
3	
4	
5	
Total	

- (1) Consider the set $A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 25, x + y \ge 5.$
 - (a) (4 **points**) Draw the set A, its interior and boundary. Justify if the set A is open, closed, bounded, compact or convex.
 - (b) (3 points) State Weierstrass' Theorem. Determine if it is possible to apply Weierstrass' Theorem to the function f(x, y) = xy defined on A. Draw the level curves of f(x, y) = xy definided in \mathbb{R}^2_+ and the direction of growth of the level curves.
 - (c) (3 points) Using the level curves of f above, determine if the function f attains a global maximum and/or a global minimum on the set A. If so, compute the points where the extreme values are attained and the global maximum and/or minimum value(s) of f on the set A.
- (2) Consider the function $f(x, y, z) = 4ax^2 + 4ay^2 + 5xy + 4xz + 2z^2$ defined in \mathbb{R}^3 , with $a \in \mathbb{R}$.
 - (a) (6 points) Determine for which values of a the function f is strictly convex. Determine for which values of a the function f is strictly concave.
 - (b) (4 points) Using the results above, determine if the set $D = \{(x, y, z) \in \mathbb{R}^3 : 4x^2 + 5xy + 4xz + 4y^2 + 2z^2 \le 5\}$ is convex.
- (3) Consider the set of equations

$$xy^{2} - yz^{2} + yz = 1 xe^{2z} - y^{2}z = 1$$

- (a) (4 **points**) Prove that the above set of equations defines implicitly two differentiable functions y(x) and z(x) near the point (x, y, z) = (1, -1, 0).
- (b) (6 points) Compute

and Taylor's polynomial of order one of the function y(x) at the point $x_0 = 1$. Using that polynomial, find and approximation to the value of y(0.95).

- (4) Consider the function $f(x,y) = 2x^2y xy + 2x 2y^2 15y + 1$, the point p = (1,2) and the vector v = (-1,3).
 - (a) (5 points) Compute the gradient and the Hessian matrix of the function f at the point p. Compute $D_v f(p)$.
 - (b) (5 points) Compute the tangent plane to the graph of the function f at the point (p, f(p)). Compute Taylor's polynomial of second order of the function f at the point p.
- (5) Consider the function f(x, y) : ℝ² → ℝ and the functions x(u, v), y(u, v) : ℝ² → ℝ. Consider the composition h : ℝ² → ℝ defined by h(u, v) = f(x(u, v), y(u, v)).
 (a) (2 points) State the chain rule for the case,

$$\frac{\partial h}{\partial u}, \quad \frac{\partial h}{\partial v}$$

(b) (5 points) Use the previous part to compute

$$\frac{\partial h}{\partial u}, \quad \frac{\partial h}{\partial v}$$

for the functions

$$f(x,y) = \frac{2x-y}{x+3y}$$
 and $x(u,v) = -ue^{2u}$, $y(u,v) = v^2e^{2u}$

at the point $(u_0, v_0) = (0, -1)$.

(c) (3 points) Compute the composite function h(u, v), its gradient $\nabla h(u, v)$ and check that $\nabla h(0, -1)$ agrees with the result computed in the preceding part.