University Carlos III Department of Economics Mathematics I. Final Exam. January 21st 2022

Last Name:		Name:
ID number:	Degree:	Group:

IMPORTANT

- DURATION OF THE EXAM: 2h
- Calculators are **NOT** allowed.
- Scrap paper: You may use the last two pages of this exam and the space behind this page.
- **Do NOT UNSTAPLE** the exam.
- You must show a valid ID to the professor.

Problem	Points
1	
2	
3	
4	
5	
Total	

- (1) Consider the set $A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 25, x + y \ge 5.$
 - (a) Draw the set A, its interior and boundary. Justify if the set A is open, closed, bounded, compact or convex.

Solution: The set A, its interior and its boundary are:

Since, the set A contain its boundary, it is closed. It does not coincide with its interior. Hence, it is not open. Graphically, we see that the set A is bounded and convex. The set A is compact.

(b) State Weierstrass' Theorem. Determine if it is possible to apply Weierstrass' Theorem to the function f(x, y) = xy defined on A. Draw the level curves of f(x, y) = xy definided in \mathbb{R}^2_+ and the direction of growth of the level curves.

Solution: The function f(x, y) = xy is continuous in \mathbb{R}^2 . Hence, it is continuous in $A \subset \mathbb{R}^2$. In addition, the set A is compact. Weierstrass' theorem applies.

The level curves of the function f are given by the equation xy = C. For $C \neq 0$, we obtain $y = \frac{C}{x}$. For C = 0, we obtain the coordinate axes. Graphically, for x, y > 0,

The arrow points in the direction of growth of C.

(c) Using the level curves of f above, determine if the function f attains a global maximum and/or a global minimum on the set A. If so, compute the points where the extreme values are attained and the global maximum and/or minimum value(s) of f on the set A.

Solution: Note that on A we have $f(x, y) \ge 0$ and f(5, 0) = f(0, 5) = 0. The global minimum is attained at the points (5, 0) and (0, 5). Graphically,

The maximum value on A is attained at the point, say (a,b), of tangency of the curve xy = C and the curve given by the equation $x^2 + y^2 = 25$. Let $y_1(x)$ the function defined by solving for y in the equation yx = C. And let $y_2(x)$ the function defined by solving fory in the equation $x^2 + y^2 = 25$. We have that

$$y_1'(a) = y_2'(a)$$

On the other hand, differentiating implicitly the above equations we have that

$$y_1 + xy_1' = 0$$
, and $2x + 2y_2y_2' = 0$

We plug in the values x = a, $y_1(a) = y_2(a) = b$ and $m = y'_1(a) = y'_2(a)$ and obtain

$$b + am = 0, \quad and \quad a + bm = 0$$

or $a = -bm = -b^2/a$. Hence, $a^2 = b^2$. Since $a, b \ge 0$, we have a = b. And from $a^2 + b^2 = 25$ we obtain

$$a = b = \frac{5}{\sqrt{2}}$$

- (2) Consider the function $f(x, y, z) = 4ax^2 + 4ay^2 + 5xy + 4xz + 2z^2$ defined in \mathbb{R}^3 , with $a \in \mathbb{R}$.
 - (a) Determine for which values of a the function f is strictly convex. Determine for which values of a the function f is strictly concave.

Solution: We have

$$\nabla(x, y, z) = (8ax + 5y + 4z, 5x + 8ay, 4x + 4z), \quad \mathbf{H}(f)(x, y, z) = \begin{pmatrix} 8a & 5 & 4\\ 5 & 8a & 0\\ 4 & 0 & 4 \end{pmatrix}$$

We consider $D_1 = 4$, $D_2 = 32a$, $D_3 = |A| = 4(64a^2 - 32a - 25)$. The roots of $64a^2 - 32a - 25 = 0$ are

$$a = \frac{32 \pm \sqrt{32^2 + 100 \times 64}}{2 \times 64} = \frac{2 \pm \sqrt{29}}{8}$$

Thus, $64a^2 - 32a - 25$ represents a parabola whose branches point upwards and intersects the X-axis at the points $a_1 = \frac{2-\sqrt{29}}{8} < 0$ and $a_2 = \frac{2+\sqrt{29}}{8} > 0$.

- (i) We see that $D_1 > 0$. And $D_2 > 0$ iff a > 0. Assuming a > 0, $D_3 > 0$ iff $a > \frac{2+\sqrt{29}}{8}$. We conclude that $D_1, D_2, D_3 > 0$ iff $a > \frac{2+\sqrt{29}}{8}$. Thus, f is strictly convex for $a > \frac{2+\sqrt{29}}{8}$.
- (ii) Since $D_1 > 0$, the function cannot be concave.

Solution: We have that

$$D_1 = 2y, \quad D_2 = 4y - (c+2x)^2$$

We see that $D_1 > 0$ if and only if y > 0 and $D_2 > 0$ if and only if $y > \frac{1}{4}(c+2x)^2$. Hence,

$$D = \{(x, y) \in \mathbb{R}^2 : y > \frac{1}{4}(c + 2x)^2\}$$

(b) Using the results above, determine if the set $D = \{(x, y, z) \in \mathbb{R}^3 : 4x^2 + 5xy + 4xz + 4y^2 + 2z^2 \le 5\}$

is convex. Solution: Taking $a = 1 > \frac{2+\sqrt{29}}{8}$ we have $f(x, y, z) = ax^2 + 4y^2 + 5xy + 4xz + 2z^2$. Thus, $D = \{(x, y, z) \in \mathbb{R}^3 : f(x, y, z) \leq 5\}$. Since, f is convex, the set D is convex.

(3) Consider the set of equations

$$\left. \begin{array}{rcl} xy^2 - yz^2 + yz & = & 1 \\ xe^{2z} - y^2z & = & 1 \end{array} \right\}$$

(a) Prove that the above set of equations defines implicitly two differentiable functions y(x) and z(x) near the point (x, y, z) = (1, -1, 0).

Solution: We check first that (x, y, z) = (1, -1, 0) is a solution of the system of equations. The functions $f_1(x, y, z) = xy^2 - yz^2 + yz - 1$ and $f_2(x, y, z) = xe^{2z} - y^2z - 1$ contain polynomials and exponentials. Hence, they are of class C^{∞} . We compute the value of

$$\begin{vmatrix} \frac{\partial f_1}{\partial y} & \frac{\partial f_1}{\partial z} \\ \frac{\partial f_2}{\partial y} & \frac{\partial f_2}{\partial z} \end{vmatrix}_{(x,y,z)=(1,-1,0)} = \begin{vmatrix} 2xy - z^2 + z & -2yz + y \\ -2yz & 2xe^{2z} - y^2 \end{vmatrix}_{(x,y,z)=(1,-1,0)}$$
$$= \begin{vmatrix} -2 & -1 \\ 0 & 1 \end{vmatrix} = -2 \neq 0$$

By the implicit value theorem, the above system of equations determines implicitly two differentiable functions y(x) and z(x) defined near the solution (x, y, z) = (1, -1, 0).

(b) Compute

and Taylor's polynomial of order one of the function y(x) at the point $x_0 = 1$. Using that polynomial, find and approximation to the value of y(0.95).

Solution: Differentiating implicitly with respect to x,

1 -

 $\overline{7}$

$$\begin{array}{rcl} y^2 + 2xyy' - y'z^2 - 2yzz' + y'z + yz' &=& 0 \\ e^{2z} + 2xz'e^{2z} - 2yy'z - y^2z' &=& 0 \end{array}$$

Now, we substitute the coordinates of the point (x, y, z) = (1, -1, 0). We obtain

$$\begin{array}{rcl} -2y'(1) - 0 - 0 + 0 - z'(1) &=& 0\\ 1 + 2z'(1) - z'(1) &=& 0 \end{array}$$

So,

$$y'(1) = -1, \quad y'(1) = 1$$

Therefore Taylor's first order polynomial of the function y(x) at the point $x_0 = 1$ is $P_1(x) = y(1) + y'(1)(x-1) = -1 + 1(x-1) = x - 2$ We use to obtain an approximate value of $y(0.95) \approx P_1(0.95) = 0.95 - 2 = -1.05$

- (4) Consider the function $f(x,y) = 2x^2y xy + 2x 2y^2 15y + 1$, the point p = (1,2) and the vector v = (-1, 3).
 - (a) Compute the gradient and the Hessian matrix of the function f at the point p. Compute $D_v f(p)$.

Solution: We have

$$\nabla f(x,y) = (4xy - y + 2, 2x^2 - x - 4y - 15)$$

H f(x,y) = $\begin{pmatrix} 4y & 4x - 1 \\ 4x - 1 & -4 \end{pmatrix}$

Hence,

$$\nabla f(1,2) = (8,-22) H f(1,2) = \begin{pmatrix} 8 & 3 \\ 3 & -4 \end{pmatrix}$$

and

$$D_v f(p) = v \cdot \nabla f(p) = v = (-1,3) \cdot (8,-22) = -74$$

(b) Compute the tangent plane to the graph of the function f at the point (p, f(p)). Compute Taylor's polynomial of second order of the function f at the point p.

1

Solution:

The equation of the tangent plane is

$$z = f(1,2) + \nabla f(p) \cdot (x-1, y-2) = -33 + (8, -22) \cdot (x-1, y-2) = -33 + 8(-1+x) - 22(-2+y)$$

Taylor's second order polynomial of the function f at the point p is

1

$$P_{2}(x,y) = f(1,2) + \nabla f(p) \cdot (x-1,y-2) + \frac{1}{2}(x-1,y-2) \operatorname{H} f(1,2) \left(\begin{array}{c} x-1\\ y-2 \end{array} \right) = \\ = -33 + \frac{1}{2}((x-1)(8(x-1)+3(y-2)) + (y-2)(3(x-1)-4(y-2))) + 8(x-1) - 22(y-2) \\ = 4x^{2} + 3xy - 6x - 2y^{2} - 17y + 5 \end{cases}$$

(5) Consider the function $f(x,y): \mathbb{R}^2 \longrightarrow \mathbb{R}$ and the functions $x(u,v), y(u,v): \mathbb{R}^2 \longrightarrow \mathbb{R}$. Consider the composition $h: \mathbb{R}^2 \longrightarrow \mathbb{R}$ defined by h(u, v) = f(x(u, v), y(u, v)).

(a) State the chain rule for the case,

$$\frac{\partial h}{\partial u}, \quad \frac{\partial h}{\partial v}$$

Solution:

$$\frac{\partial h}{\partial u} = \frac{\partial f}{\partial x}\frac{\partial x}{\partial u} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial u}$$
$$\frac{\partial h}{\partial v} = \frac{\partial f}{\partial x}\frac{\partial x}{\partial v} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial v}$$

(b) Use the previous part to compute

$$\frac{\partial h}{\partial u}, \quad \frac{\partial h}{\partial v}$$

for the functions

$$f(x,y) = \frac{2x-y}{x+3y}$$
 and $x(u,v) = -ue^{2u}$, $y(u,v) = v^2 e^{2u}$

at the point $(u_0, v_0) = (0, -1)$.

Solution:

$$\begin{aligned} x(0,-1) &= 0, \quad y(0,-1) = 1 \\ \frac{\partial f}{\partial x} &= \frac{7y}{(x+3y)^2} \longrightarrow \frac{\partial f}{\partial x}(0,1) = \frac{7}{9} \\ \frac{\partial f}{\partial y} &= \frac{-7x}{(x+3y)^2} \longrightarrow \frac{\partial f}{\partial y}(0,1) = 0 \\ \frac{\partial x}{\partial u} &= -e^{2u} - 2ue^{2u} \longrightarrow \frac{\partial x}{\partial u}(0,-1) = -1; \quad \frac{\partial x}{\partial v} = 0 \longrightarrow \frac{\partial x}{\partial v}(0,-1) = 0 \\ \frac{\partial y}{\partial u} &= 2v^2 e^{2u} \longrightarrow \frac{\partial y}{\partial u}(0,-1) = 2; \quad \frac{\partial y}{\partial v} = 2ve^{2u} \longrightarrow \frac{\partial y}{\partial v}(0,-1) = -2 \end{aligned}$$

Hence,

$$\frac{\partial h}{\partial u}(0,-1) = \frac{\partial f}{\partial x}\frac{\partial x}{\partial u} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial u} = \frac{7}{9}\cdot(-1) + 0\cdot 2 = \frac{-7}{9}$$
$$\frac{\partial h}{\partial v}(0,-1) = \frac{\partial f}{\partial x}\frac{\partial x}{\partial v} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial v} = \frac{7}{9}\cdot 0 + 0\cdot(-2) = 0$$

(c) Compute the composite function h(u, v), its gradient $\nabla h(u, v)$ and check that $\nabla h(0, -1)$ agrees with the result computed in the preceding part.

Solution:

$$h(u,v)\frac{-2ue^{2u}-v^2e^{2u}}{-ue^{2u}+3v^2e^{2u}} = \frac{2u+v^2}{u-3v^2}$$

$$\vec{\nabla}h(u,v) = \left(\frac{\partial h}{\partial u}, \frac{\partial h}{\partial v}\right) = \left(\frac{2(u-3v^2) - (2u+v^2)}{(u-3v^2)^2}, \frac{2v(u-3v^2) + 6v(2u+v^2)}{(u-3v^2)^2}\right) = \left(\frac{-7v^2}{(u-3v^2)^2}, \frac{14uv}{(u-3v^2)^2}\right)$$
and we obtain $\vec{\nabla}h(0,-1) = \left(\frac{-7}{2}, 0\right)$ which coincides with the previous result

and we obtain $\nabla h(0, -1) = (\frac{-i}{9}, 0)$ which coincides with the previous result.