| Last Name: | Name: |  |
| :--- | :--- | :--- |
| ID number: | Degree: | Group: |

## IMPORTANT

- DURATION OF THE EXAM: 2h
- Calculators are NOT allowed.
- Scrap paper: You may use the last two pages of this exam and the space behind this page.
- Do NOT UNSTAPLE the exam.
- You must show a valid ID to the professor.

| Problem | Points |
| :---: | :---: |
| 1 |  |
| 2 |  |
| 3 |  |
| 4 |  |
| 5 |  |
| Total |  |

(1) Consider the set $A=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 25, x+y \geq 5\right.$.
(a) Draw the set $A$, its interior and boundary. Justify if the set $A$ is open, closed, bounded, compact or convex.

Solution: The set $A$, its interior and its boundary are:


Since, the set $A$ contain its boundary, it is closed. It does not coincide with its interior. Hence, it is not open. Graphically, we see that the set $A$ is bounded and convex. The set $A$ is compact.
(b) State Weierstrass' Theorem. Determine if it is possible to apply Weierstrass' Theorem to the function $f(x, y)=x y$ defined on $A$. Draw the level curves of $f(x, y)=x y$ definided in $\mathbb{R}_{+}^{2}$ and the direction of growth of the level curves.

Solution: The function $f(x, y)=x y$ is continuous in $\mathbb{R}^{2}$. Hence, it is continuous in $A \subset \mathbb{R}^{2}$. In addition, the set $A$ is compact. Weierstrass' theorem applies.

The level curves of the function $f$ are given by the equation $x y=C$. For $C \neq 0$, we obtain $y=\frac{C}{x}$. For $C=0$, we obtain the coordinate axes. Graphically, for $x, y>0$,


The arrow points in the direction of growth of $C$.
(c) Using the level curves of $f$ above, determine if the function $f$ attains a global maximum and/or a global minimum on the set $A$. If so, compute the points where the extreme values are attained and the global maximum and/or minimum value(s) of $f$ on the set $A$.

Solution: Note that on $A$ we have $f(x, y) \geq 0$ and $f(5,0)=f(0,5)=0$. The global minimum is attained at the points $(5,0)$ and $(0,5)$. Graphically,


The maximum value on $A$ is attained at the point, say $(a, b)$, of tangency of the curve $x y=C$ and the curve given by the equation $x^{2}+y^{2}=25$. Let $y_{1}(x)$ the function defined by solving for $y$ in the equation $y x=C$. And let $y_{2}(x)$ the function defined by solving fory in the equation $x^{2}+y^{2}=25$. We have that

$$
y_{1}^{\prime}(a)=y_{2}^{\prime}(a)
$$

On the other hand, differentiating implicitly the above equations we have that

$$
y_{1}+x y_{1}^{\prime}=0, \quad \text { and } \quad 2 x+2 y_{2} y_{2}^{\prime}=0
$$

We plug in the values $x=a, y_{1}(a)=y_{2}(a)=b$ and $m=y_{1}^{\prime}(a)=y_{2}^{\prime}(a)$ and obtain

$$
b+a m=0, \quad \text { and } \quad a+b m=0
$$

or $a=-b m=-b^{2} / a$. Hence, $a^{2}=b^{2}$. Since $a, b \geq 0$, we have $a=b$. And from $a^{2}+b^{2}=25$ we obtain

$$
a=b=\frac{5}{\sqrt{2}}
$$

(2) Consider the function $f(x, y, z)=4 a x^{2}+4 a y^{2}+5 x y+4 x z+2 z^{2}$ defined in $\mathbb{R}^{3}$, with $a \in \mathbb{R}$.
(a) Determine for which values of $a$ the function $f$ is strictly convex. Determine for which values of $a$ the function $f$ is strictly concave.

Solution: We have

$$
\nabla(x, y, z)=(8 a x+5 y+4 z, 5 x+8 a y, 4 x+4 z), \quad \mathrm{H}(f)(x, y, z)=\left(\begin{array}{ccc}
8 a & 5 & 4 \\
5 & 8 a & 0 \\
4 & 0 & 4
\end{array}\right)
$$

We consider $D_{1}=4, D_{2}=32 a, D_{3}=|A|=4\left(64 a^{2}-32 a-25\right)$. The roots of $64 a^{2}-32 a-25=0$ are

$$
a=\frac{32 \pm \sqrt{32^{2}+100 \times 64}}{2 \times 64}=\frac{2 \pm \sqrt{29}}{8}
$$

Thus, $64 a^{2}-32 a-25$ represents a parabola whose branches point upwards and intersects the $X$-axis at the points $a_{1}=\frac{2-\sqrt{29}}{8}<0$ and $a_{2}=\frac{2+\sqrt{29}}{8}>0$.

(i) We see that $D_{1}>0$. And $D_{2}>0$ iff $a>0$. Assuming $a>0, D_{3}>0$ iff $a>\frac{2+\sqrt{29}}{8}$. We conclude that $D_{1}, D_{2}, D_{3}>0$ iff $a>\frac{2+\sqrt{29}}{8}$. Thus, $f$ is strictly convex for $a>\frac{2+\sqrt{29}}{8}$.
(ii) Since $D_{1}>0$, the function cannot be concave.

Solution: We have that

$$
D_{1}=2 y, \quad D_{2}=4 y-(c+2 x)^{2}
$$

We see that $D_{1}>0$ if and only if $y>0$ and $D_{2}>0$ if and only if $y>\frac{1}{4}(c+2 x)^{2}$. Hence,

$$
D=\left\{(x, y) \in \mathbb{R}^{2}: y>\frac{1}{4}(c+2 x)^{2}\right\}
$$

(b) Using the results above, determine if the set $D=\left\{(x, y, z) \in \mathbb{R}^{3}: 4 x^{2}+5 x y+4 x z+4 y^{2}+2 z^{2} \leq 5\right\}$ is convex. Solution:
Taking $a=1>\frac{2+\sqrt{29}}{8}$ we have $f(x, y, z)=a x^{2}+4 y^{2}+5 x y+4 x z+2 z^{2}$. Thus, $D=\{(x, y, z) \in$ $\left.\mathbb{R}^{3}: f(x, y, z) \leq 5\right\}$. Since, $f$ is convex, the set $D$ is convex.
(3) Consider the set of equations

$$
\left.\begin{array}{rl}
x y^{2}-y z^{2}+y z & =1 \\
x e^{2 z}-y^{2} z & =1
\end{array}\right\}
$$

(a) Prove that the above set of equations defines implicitly two differentiable functions $y(x)$ and $z(x)$ near the point $(x, y, z)=(1,-1,0)$.

Solution: We check first that $(x, y, z)=(1,-1,0)$ is a solution of the system of equations. The functions $f_{1}(x, y, z)=x y^{2}-y z^{2}+y z-1$ and $f_{2}(x, y, z)=x e^{2 z}-y^{2} z-1$ contain polynomials and exponentials. Hence, they are of class $C^{\infty}$. We compute the value of

$$
\begin{aligned}
\left|\begin{array}{ll}
\frac{\partial f_{1}}{\partial y} & \frac{\partial f_{1}}{\partial z} \\
\frac{\partial f_{2}}{\partial y} & \frac{\partial f_{2}}{\partial z}
\end{array}\right|_{(x, y, z)=(1,-1,0)} & =\left|\begin{array}{cc}
2 x y-z^{2}+z & -2 y z+y \\
-2 y z & 2 x e^{2 z}-y^{2}
\end{array}\right|_{(x, y, z)=(1,-1,0)} \\
& =\left|\begin{array}{cc}
-2 & -1 \\
0 & 1
\end{array}\right|=-2 \neq 0
\end{aligned}
$$

By the implicit value theorem, the above sytem of equations determines implicitly two differentiable functions $y(x)$ and $z(x)$ defined near the solution $(x, y, z)=(1,-1,0)$.
(b) Compute

$$
y^{\prime}(1), z^{\prime}(1)
$$

and Taylor's polynomial of order one of the function $y(x)$ at the point $x_{0}=1$. Using that polynomial, find and approximation to the value of $y(0.95)$.

Solution: Differentiating implicitly with respect to $x$,

$$
\begin{aligned}
y^{2}+2 x y y^{\prime}-y^{\prime} z^{2}-2 y z z^{\prime}+y^{\prime} z+y z^{\prime} & =0 \\
e^{2 z}+2 x z^{\prime} e^{2 z}-2 y y^{\prime} z-y^{2} z^{\prime} & =0
\end{aligned}
$$

Now, we substitute the coordinates of the point $(x, y, z)=(1,-1,0)$. We obtain

$$
\begin{aligned}
1-2 y^{\prime}(1)-0-0+0-z^{\prime}(1) & =0 \\
1+2 z^{\prime}(1)-z^{\prime}(1) & =0
\end{aligned}
$$

So,

$$
z^{\prime}(1)=-1, \quad y^{\prime}(1)=1
$$

Therefore Taylor's first order polynomial of the function $y(x)$ at the point $x_{0}=1$ is

$$
P_{1}(x)=y(1)+y^{\prime}(1)(x-1)=-1+1(x-1)=x-2
$$

We use to obtain an approximate value of $y(0.95) \approx P_{1}(0.95)=0.95-2=-1.05$
(4) Consider the function $f(x, y)=2 x^{2} y-x y+2 x-2 y^{2}-15 y+1$, the point $p=(1,2)$ and the vector $v=(-1,3)$.
(a) Compute the gradient and the Hessian matrix of the función $f$ at the point $p$. Compute $D_{v} f(p)$.

Solution: We have

$$
\begin{aligned}
\nabla f(x, y) & =\left(4 x y-y+2,2 x^{2}-x-4 y-15\right) \\
H f(x, y) & =\left(\begin{array}{cc}
4 y & 4 x-1 \\
4 x-1 & -4
\end{array}\right)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\nabla f(1,2) & =(8,-22) \\
H f(1,2) & =\left(\begin{array}{rr}
8 & 3 \\
3 & -4
\end{array}\right)
\end{aligned}
$$

and

$$
D_{v} f(p)=v \cdot \nabla f(p)=v=(-1,3) \cdot(8,-22)=-74
$$

(b) Compute the tangent plane to the graph of the function $f$ at the point $(p, f(p))$. Compute Taylor's polynomial of second order of the function $f$ at the point $p$.

## Solution:

The equation of the tangent plane is

$$
\begin{aligned}
z & =f(1,2)+\nabla f(p) \cdot(x-1, y-2)=-33+(8,-22) \cdot(x-1, y-2)= \\
& =-33+8(-1+x)-22(-2+y)
\end{aligned}
$$

Taylor's second order polynomial of the function $f$ at the point $p$ is

$$
\begin{aligned}
P_{2}(x, y) & =f(1,2)+\nabla f(p) \cdot(x-1, y-2)+\frac{1}{2}(x-1, y-2) \mathrm{H} f(1,2)\binom{x-1}{y-2}= \\
& =-33+\frac{1}{2}((x-1)(8(x-1)+3(y-2))+(y-2)(3(x-1)-4(y-2)))+8(x-1)-22(y-2) \\
& =4 x^{2}+3 x y-6 x-2 y^{2}-17 y+5
\end{aligned}
$$

(5) Consider the function $f(x, y): \mathbb{R}^{2} \longrightarrow \mathbb{R}$ and the functions $x(u, v), y(u, v): \mathbb{R}^{2} \longrightarrow \mathbb{R}$. Consider the composition $h: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ defined by $h(u, v)=f(x(u, v), y(u, v))$.
(a) State the chain rule for the case,

$$
\frac{\partial h}{\partial u}, \quad \frac{\partial h}{\partial v}
$$

## Solution:

$$
\begin{aligned}
\frac{\partial h}{\partial u} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial u} \\
\frac{\partial h}{\partial v} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial v}
\end{aligned}
$$

(b) Use the previous part to compute

$$
\frac{\partial h}{\partial u}, \quad \frac{\partial h}{\partial v}
$$

for the functions

$$
f(x, y)=\frac{2 x-y}{x+3 y} \quad \text { and } \quad x(u, v)=-u e^{2 u}, \quad y(u, v)=v^{2} e^{2 u}
$$

at the point $\left(u_{0}, v_{0}\right)=(0,-1)$.

## Solution:

$$
\begin{gathered}
x(0,-1)=0, \quad y(0,-1)=1 \\
\frac{\partial f}{\partial x}=\frac{7 y}{(x+3 y)^{2}} \longrightarrow \frac{\partial f}{\partial x}(0,1)=\frac{7}{9} \\
\frac{\partial f}{\partial y}=\frac{-7 x}{(x+3 y)^{2}} \longrightarrow \frac{\partial f}{\partial y}(0,1)=0 \\
\frac{\partial x}{\partial u}=-e^{2 u}-2 u e^{2 u} \longrightarrow \frac{\partial x}{\partial u}(0,-1)=-1 ; \quad \frac{\partial x}{\partial v}=0 \longrightarrow \frac{\partial x}{\partial v}(0,-1)=0 \\
\frac{\partial y}{\partial u}=2 v^{2} e^{2 u} \longrightarrow \frac{\partial y}{\partial u}(0,-1)=2 ; \quad \frac{\partial y}{\partial v}=2 v e^{2 u} \longrightarrow \frac{\partial y}{\partial v}(0,-1)=-2
\end{gathered}
$$

Hence,

$$
\begin{gathered}
\frac{\partial h}{\partial u}(0,-1)=\frac{\partial f}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial u}=\frac{7}{9} \cdot(-1)+0 \cdot 2=\frac{-7}{9} \\
\frac{\partial h}{\partial v}(0,-1)=\frac{\partial f}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial v}=\frac{7}{9} \cdot 0+0 \cdot(-2)=0
\end{gathered}
$$

(c) Compute the composite function $h(u, v)$, its gradient $\nabla h(u, v)$ and check that $\nabla h(0,-1)$ agrees with the result computed in the preceding part.

## Solution:

$$
h(u, v) \frac{-2 u e^{2 u}-v^{2} e^{2 u}}{-u e^{2 u}+3 v^{2} e^{2 u}}=\frac{2 u+v^{2}}{u-3 v^{2}}
$$

$\vec{\nabla} h(u, v)=\left(\frac{\partial h}{\partial u}, \frac{\partial h}{\partial v}\right)=\left(\frac{2\left(u-3 v^{2}\right)-\left(2 u+v^{2}\right)}{\left(u-3 v^{2}\right)^{2}}, \frac{2 v\left(u-3 v^{2}\right)+6 v\left(2 u+v^{2}\right)}{\left(u-3 v^{2}\right)^{2}}\right)=\left(\frac{-7 v^{2}}{\left(u-3 v^{2}\right)^{2}}, \frac{14 u v}{\left(u-3 v^{2}\right)^{2}}\right)$
and we obtain $\vec{\nabla} h(0,-1)=\left(\frac{-7}{9}, 0\right)$ which coincides with the previous result.

