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(1) Consider the set A = {(z,y) € R? : 2% + y*> < 25,z +y > 5.

(a)

Draw the set A, its interior and boundary. Justify if the set A is open, closed, bounded, compact
or convex.

Solution: The set A, its interior and its boundary are:
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Since, the set A contain its boundary, it is closed. It does not coincide with its interior. Hence, it
is not open. Graphically, we see that the set A is bounded and convex. The set A is compact.

State Weierstrass’” Theorem. Determine if it is possible to apply Weierstrass’ Theorem to the
function f(z,y) = xy defined on A. Draw the level curves of f(z,y) = zy definided in R and the
direction of growth of the level curves.

Solution: The function f(x,y) = xy is continuous in R%. Hence, it is continuous in A C R%. In
addition, the set A is compact. Weierstrass’ theorem applies.

The level curves of the function f are given by the equation xy = C. For C # 0, we obtain y = %
For C =0, we obtain the coordinate axes. Graphically, for x,y > 0,

5t (0,5)

The arrow points in the direction of growth of C.

Using the level curves of f above, determine if the function f attains a global maximum and/or
a global minimum on the set A. If so, compute the points where the extreme values are attained
and the global maximum and/or minimum value(s) of f on the set A.

Solution: Note that on A we have f(xz,y) > 0 and f(5,0) = f(0,5) = 0. The global minimum is
attained at the points (5,0) and (0,5). Graphically,



The mazimum value on A is attained at the point, say (a,b), of tangency of the curve vy = C and
the curve given by the equation x2 +y? = 25. Let y1(x) the function defined by solving for y in the
equation yr = C. And let yo(z) the function defined by solving fory in the equation x° + y? = 25.
We have that

y1(a) = y3(a)
On the other hand, differentiating implicitly the above equations we have that

yi+ayy =0, and 2z+2yy5 =0
We plug in the values x = a, y1(a) = y2(a) = b and m = yj(a) = y4(a) and obtain
b+am=0, and a+bm=0

ora = —bm = —b?/a. Hence, a®> = b%. Since a,b > 0, we have a = b. And from a® + b*> = 25 we
obtain

a=b=—
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(2) Consider the function f(z,y,2) = 4ax? + 4ay?® + 5xy + 42z + 222 defined in R3, with a € R.
(a) Determine for which values of a the function f is strictly convex. Determine for which values of
a the function f is strictly concave.

Solution: We have

8a 5 4
V(z,y,2) = (8ax + 5y + 42,5z + 8ay,4x + 4z), H(f)(z,y,2) = 5 8 0
4 0 4

We consider D1 = 4, Do = 32a, D3 = |A| =4 (64(12 — 32a — 25). The roots of 64a —32a —25 = 0

are
a_32j:\/322+100><64_2i\/29
o 2 x 64 - 8

Thus, 64a% —32a—25 represents a parabola whose branches point upwards and intersects the X -axis
22V29 < 0 and ap = ZEY2 > 0.

at the points a; =

300
64a? —32a —25

200 -

100
1.0 ,0_5\ 0.5 1.0 15
-1

(i) We see that D1 > 0. And Dy > 0 iff a > 0. Assuming a > 0, D3 > 0 iff a > @. We
conclude that D1, Do, D3 > 0 iff a > %. Thus, f is strictly convex for a > @.

(ii) Since D1 > 0, the function cannot be concave.

Solution: We have that
Dy =2y, D=4y — (c+ 2x)?
We see that Dy > 0 if and only if y > 0 and D2 > 0 if and only if y > i(c +2x)%. Hence,

D={(z,y) eR2:y > %(c+2x)2}

(b) Using the results above, determine if the set D = {(z,y,2) € R3 : 422 + 5oy + 4z + 4y* + 222 < 5}
is convex. Solution:
Taking a = 1 > QJFT‘/E we have f(z,y,2) = ax® + 4y* + dwy + 4xz + 222, Thus, D = {(z,y,2) €
R3: f(x,y,2) < 5}. Since, f is conver, the set D is conve.



(3) Consider the set of equations

(a)

oy —ylP+yz = 1
re?? — yzz = 1
Prove that the above set of equations defines implicitly two differentiable functions y(x) and z(x)
near the point (z,y,z) = (1,—1,0).

Solution: We check first that (z,y,z) = (1,—1,0) is a solution of the system of equations. The
functions fi(z,y,2) = 2y? —yz2 +yz — 1 and fo(x,y, 2) = ve** —y?2 — 1 contain polynomials and
exponentials. Hence, they are of class C*°. We compute the value of

%? % _ 2y — 22+ 2 —2yz+y

ofs  Ofs = _ 2z .2

9y 0z (z,y,2)=(1,—1,0) 2yz 2ze Yy (z,y,2)=(1,—1,0)
-2 -1
0 1 ’ =270

By the implicit value theorem, the above sytem of equations determines implicitly two differentiable
functions y(x) and z(x) defined near the solution (z,y,z) = (1,—1,0).

Compute

y'(1),2'(1)
and Taylor’s polynomial of order one of the function y(z) at the point zp = 1. Using that polyno-
mial, find and approximation to the value of y(0.95).

Solution: Differentiating implicitly with respect to x,
v+ 2ayy —y 22— 2y a4y = 0
e 42 e — 2z — 22 = 0

Now, we substitute the coordinates of the point (z,y,z) = (1,—1,0). We obtain
1-2y/(1)-0-04+0—-2'(1) = 0
1+2(1)—2'(1) = 0

So,
1) =-1, y(1)=1
Therefore Taylor’s first order polynomial of the function y(z) at the point xo =1 is
P)=y)+yD(z-1)=-14+1(z—-1)=2-2
We use to obtain an approzimate value of y(0.95) ~ P;(0.95) = 0.95 — 2 = —1.05



(4) Consider the function f(x,y) = 22%y — 2y + 22 — 2y* — 15y + 1, the point p = (1,2) and the vector
v=(-1,3).

(a)

PQ(xvy)

Compute the gradient and the Hessian matrix of the funcién f at the point p. Compute D, f(p).

Solution: We have
Vi(z,y) = (doy—y+2,22° —x— 4y — 15)

Hf(x,y) _ (4x4y1 41;1)

Hence,

Hf(1,2) = <§, _i)

va(p) =v- Vf(p) =v= (7173) ’ (8v 722) =74

and

Compute the tangent plane to the graph of the function f at the point (p, f(p)). Compute Taylor’s
polynomial of second order of the function f at the point p.

Solution:
The equation of the tangent plane is

z = f(L,2)+Vflp) - (z—1,y—2)=-33+(8,-22)- (z—1,y—2) =
= —33+8(—1+4+2x)—22(-2+y)

Taylor’s second order polynomial of the function f at the point p is
1 z—1

—33+ %((x —1)Bz—-1)+3(y—2)+(y—2)B—-1)—4(y—2))) +8(x —1) —22(y — 2)
= 42® +3zy—6z—2y° — 17Ty +5
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(5) Consider the function f(x,y) : R?> — R and the functions x(u,v),y(u,v) : R?> — R. Consider the
composition h : R? — R defined by h(u,v) = f(x(u,v),y(u,v)).
(a) State the chain rule for the case,

on o
ou’  Ov
Solution:
on _0for  0f oy
ou Oxrou Oyou
on _ 050 010y
v dxdv Oyodv
(b) Use the previous part to compute

Ooh  Oh
o’ v
for the functions
20—y 2u 2 2u
flz,y) = T3y and z(u,v) = —ue®™, y(u,v) =0

at the point (ug,v9) = (0, —1).

Solution:
z(0,-1) =0, y(0,-1)=1
of Ty of 7
o9 1= L
ox  (xz+ 3y)? - ox (0.1) 9
af —Tx of
- = P 1) =
oy~ wra? oy =0
Bx _ 2u 2u % _ — _1- %- % — —
3= e 2ue —>au(0, 1) =-1; 61)_0 3 (0,-1)=0
@ 2 2u @ 1) — @_ 2u @ 1) = —
5. = 2% 500, —1) =2 50 =20 — Z5(0,~1) = 2
Hence,
Oh _Ofox Ofdy _ T -7
8u(0’ 1)78x8u oyou 9 (-D)+0-2=

9
oh ofodx Ofdy 7
o -nN=LZ T D040 (—2) =
80(0’ ) drdv  Oyodv 9 0+0-(=2)=0

(c) Compute the composite function h(u,v), its gradient Vh(u,v) and check that Vh(0,—1) agrees
with the result computed in the preceding part.

Solution:
h(u, v) —2ue?t —v2e?  2u + v?
u,v =
T —ue + 3v2e?t oy — 302
S v) Oh Oh 2(u — 30?%) — (2u +v?) 2v(u — 3v?) + 6v(2u + v?) —Tv? 14uw
u,v) ==, =— | = -
’ ou’ v (u — 3v2)2 ’ (u — 3v?2)2 (u—3v2)2" (u — 3v2)2

and we obtain ﬁh(O, -1) = (%7,0) which coincides with the previous result.



