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(1) Consider the set A = {(x, y) ∈ R2 : x2 + y2 ≤ 25, x + y ≥ 5.
(a) Draw the set A, its interior and boundary. Justify if the set A is open, closed, bounded, compact

or convex.

Solution: The set A, its interior and its boundary are:
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Since, the set A contain its boundary, it is closed. It does not coincide with its interior. Hence, it
is not open. Graphically, we see that the set A is bounded and convex. The set A is compact.

(b) State Weierstrass’ Theorem. Determine if it is possible to apply Weierstrass’ Theorem to the
function f(x, y) = xy defined on A. Draw the level curves of f(x, y) = xy definided in R2

+and the
direction of growth of the level curves.

Solution: The function f(x, y) = xy is continuous in R2. Hence, it is continuous in A ⊂ R2. In
addition, the set A is compact. Weierstrass’ theorem applies.

The level curves of the function f are given by the equation xy = C. For C 6= 0, we obtain y = C
x .

For C = 0, we obtain the coordinate axes. Graphically, for x, y > 0,
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The arrow points in the direction of growth of C.

(c) Using the level curves of f above, determine if the function f attains a global maximum and/or
a global minimum on the set A. If so, compute the points where the extreme values are attained
and the global maximum and/or minimum value(s) of f on the set A.

Solution: Note that on A we have f(x, y) ≥ 0 and f(5, 0) = f(0, 5) = 0. The global minimum is
attained at the points (5, 0) and (0, 5). Graphically,
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The maximum value on A is attained at the point, say (a, b), of tangency of the curve xy = C and
the curve given by the equation x2 + y2 = 25. Let y1(x) the function defined by solving for y in the
equation yx = C. And let y2(x) the function defined by solving fory in the equation x2 + y2 = 25.
We have that

y′1(a) = y′2(a)

On the other hand, differentiating implicitly the above equations we have that

y1 + xy′1 = 0, and 2x + 2y2y
′
2 = 0

We plug in the values x = a, y1(a) = y2(a) = b and m = y′1(a) = y′2(a) and obtain

b + am = 0, and a + bm = 0

or a = −bm = −b2/a. Hence, a2 = b2. Since a, b ≥ 0, we have a = b. And from a2 + b2 = 25 we
obtain

a = b =
5√
2
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(2) Consider the function f(x, y, z) = 4ax2 + 4ay2 + 5xy + 4xz + 2z2 defined in R3, with a ∈ R.
(a) Determine for which values of a the function f is strictly convex. Determine for which values of

a the function f is strictly concave.

Solution: We have

∇(x, y, z) = (8ax + 5y + 4z, 5x + 8ay, 4x + 4z) , H(f)(x, y, z) =

 8a 5 4
5 8a 0
4 0 4


We consider D1 = 4, D2 = 32a, D3 = |A| = 4

(
64a2 − 32a− 25

)
. The roots of 64a2−32a−25 = 0

are

a =
32±

√
322 + 100× 64

2× 64
=

2±
√

29

8
Thus, 64a2−32a−25 represents a parabola whose branches point upwards and intersects the X-axis

at the points a1 = 2−
√
29

8 < 0 and a2 = 2+
√
29

8 > 0.
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(i) We see that D1 > 0. And D2 > 0 iff a > 0. Assuming a > 0, D3 > 0 iff a > 2+
√
29

8 . We

conclude that D1, D2, D3 > 0 iff a > 2+
√
29

8 . Thus, f is strictly convex for a > 2+
√
29

8 .

(ii) Since D1 > 0, the function cannot be concave.

Solution: We have that

D1 = 2y, D2 = 4y − (c + 2x)2

We see that D1 > 0 if and only if y > 0 and D2 > 0 if and only if y > 1
4 (c + 2x)2. Hence,

D = {(x, y) ∈ R2 : y >
1

4
(c + 2x)2}

(b) Using the results above, determine if the set D = {(x, y, z) ∈ R3 : 4x2 + 5xy+ 4xz+ 4y2 + 2z2 ≤ 5}
is convex. Solution:
Taking a = 1 > 2+

√
29

8 we have f(x, y, z) = ax2 + 4y2 + 5xy + 4xz + 2z2. Thus, D = {(x, y, z) ∈
R3 : f(x, y, z) ≤ 5}. Since, f is convex, the set D is convex.
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(3) Consider the set of equations
xy2 − yz2 + yz = 1

xe2z − y2z = 1

}
(a) Prove that the above set of equations defines implicitly two differentiable functions y(x) and z(x)

near the point (x, y, z) = (1,−1, 0).

Solution: We check first that (x, y, z) = (1,−1, 0) is a solution of the system of equations. The
functions f1(x, y, z) = xy2 − yz2 + yz− 1 and f2(x, y, z) = xe2z − y2z− 1 contain polynomials and
exponentials. Hence, they are of class C∞. We compute the value of∣∣∣∣∣∂f1∂y

∂f1
∂z

∂f2
∂y

∂f2
∂z

∣∣∣∣∣
(x,y,z)=(1,−1,0)

=

∣∣∣∣2xy − z2 + z −2yz + y
−2yz 2xe2z − y2

∣∣∣∣
(x,y,z)=(1,−1,0)

=

∣∣∣∣−2 −1
0 1

∣∣∣∣ = −2 6= 0

By the implicit value theorem, the above sytem of equations determines implicitly two differentiable
functions y(x) and z(x) defined near the solution (x, y, z) = (1,−1, 0).

(b) Compute
y′(1), z′(1)

and Taylor’s polynomial of order one of the function y(x) at the point x0 = 1. Using that polyno-
mial, find and approximation to the value of y(0.95).

Solution: Differentiating implicitly with respect to x,

y2 + 2xyy′ − y′z2 − 2yzz′ + y′z + yz′ = 0

e2z + 2xz′e2z − 2yy′z − y2z′ = 0

Now, we substitute the coordinates of the point (x, y, z) = (1,−1, 0). We obtain

1− 2y′(1)− 0− 0 + 0− z′(1) = 0

1 + 2z′(1)− z′(1) = 0

So,
z′(1) = −1, y′(1) = 1

Therefore Taylor’s first order polynomial of the function y(x) at the point x0 = 1 is

P1(x) = y(1) + y′(1)(x− 1) = −1 + 1(x− 1) = x− 2

We use to obtain an approximate value of y(0.95) ≈ P1(0.95) = 0.95− 2 = −1.05



6

(4) Consider the function f(x, y) = 2x2y − xy + 2x − 2y2 − 15y + 1, the point p = (1, 2) and the vector
v = (−1, 3).

(a) Compute the gradient and the Hessian matrix of the función f at the point p. Compute Dvf(p).

Solution: We have

∇f(x, y) =
(
4xy − y + 2, 2x2 − x− 4y − 15

)
H f(x, y) =

(
4y 4x− 1

4x− 1 −4

)
Hence,

∇f(1, 2) = (8,−22)

H f(1, 2) =

(
8 3
3 −4

)
and

Dvf(p) = v · ∇f(p) = v = (−1, 3) · (8,−22) = −74

(b) Compute the tangent plane to the graph of the function f at the point (p, f(p)). Compute Taylor’s
polynomial of second order of the function f at the point p.

Solution:
The equation of the tangent plane is

z = f(1, 2) +∇f(p) · (x− 1, y − 2) = −33 + (8,−22) · (x− 1, y − 2) =

= −33 + 8(−1 + x)− 22(−2 + y)

Taylor’s second order polynomial of the function f at the point p is

P2(x, y) = f(1, 2) +∇f(p) · (x− 1, y − 2) +
1

2
(x− 1, y − 2) H f(1, 2)

(
x− 1
y − 2

)
=

= −33 +
1

2
((x− 1)(8(x− 1) + 3(y − 2)) + (y − 2)(3(x− 1)− 4(y − 2))) + 8(x− 1)− 22(y − 2)

= 4x2 + 3xy − 6x− 2y2 − 17y + 5
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(5) Consider the function f(x, y) : R2 −→ R and the functions x(u, v), y(u, v) : R2 −→ R. Consider the
composition h : R2 −→ R defined by h(u, v) = f(x(u, v), y(u, v)).
(a) State the chain rule for the case,

∂h

∂u
,

∂h

∂v

Solution:
∂h

∂u
=

∂f

∂x

∂x

∂u
+

∂f

∂y

∂y

∂u

∂h

∂v
=

∂f

∂x

∂x

∂v
+

∂f

∂y

∂y

∂v

(b) Use the previous part to compute

∂h

∂u
,

∂h

∂v
for the functions

f(x, y) =
2x− y

x + 3y
and x(u, v) = −ue2u, y(u, v) = v2e2u

at the point (u0, v0) = (0,−1).

Solution:
x(0,−1) = 0, y(0,−1) = 1

∂f

∂x
=

7y

(x + 3y)2
−→ ∂f

∂x
(0, 1) =

7

9

∂f

∂y
=

−7x

(x + 3y)2
−→ ∂f

∂y
(0, 1) = 0

∂x

∂u
= −e2u − 2ue2u −→ ∂x

∂u
(0,−1) = −1;

∂x

∂v
= 0 −→ ∂x

∂v
(0,−1) = 0

∂y

∂u
= 2v2e2u −→ ∂y

∂u
(0,−1) = 2;

∂y

∂v
= 2ve2u −→ ∂y

∂v
(0,−1) = −2

Hence,

∂h

∂u
(0,−1) =

∂f

∂x

∂x

∂u
+

∂f

∂y

∂y

∂u
=

7

9
· (−1) + 0 · 2 =

−7

9
∂h

∂v
(0,−1) =

∂f

∂x

∂x

∂v
+

∂f

∂y

∂y

∂v
=

7

9
· 0 + 0 · (−2) = 0

.
(c) Compute the composite function h(u, v), its gradient ∇h(u, v) and check that ∇h(0,−1) agrees

with the result computed in the preceding part.

Solution:

h(u, v)
−2ue2u − v2e2u

−ue2u + 3v2e2u
=

2u + v2

u− 3v2

~∇h(u, v) =

(
∂h

∂u
,
∂h

∂v

)
=

(
2(u− 3v2)− (2u + v2)

(u− 3v2)2
,

2v(u− 3v2) + 6v(2u + v2)

(u− 3v2)2

)
=

(
−7v2

(u− 3v2)2
,

14uv

(u− 3v2)2

)
and we obtain ~∇h(0,−1) =

(−7
9 , 0

)
which coincides with the previous result.


