Last Name:	Name:	
ID number:	Degree:	Group:

IMPORTANT

- DURATION OF THE EXAM: 2h
- Calculators are NOT allowed.
- Scrap paper: You may use the last two pages of this exam and the space behind this page.
- Do NOT UNSTAPLE the exam.
- You must show a valid ID to the professor.

Problem	Points
1	
2	
3	
4	
5	
Total	

(1) Consider the set $A=\left\{(x, y) \in \mathbb{R}^{2}: y^{2} \leq x-1, x \leq 5\right\}$.
(a) (1 point) Draw the set A, its interior and boundary. Justify if the set A is open, closed, bounded, compact or convex.
(b) (1 point) State Weierstrass' Theorem. Determine if it is possible to apply Weierstrass' Theorem to the function $f(x, y)=2 y-x$ defined on A. Draw the level curves of $f(x, y)=2 y-x$ and the direction of growth of the level curves.
(c) (1 point) Using the level curves of f above, determine if this function attains a maximum and/or a minimum on the set A. If so, compute the points where the extreme values are attained and the maximum and/or minimum values of f on the set A.
(2) Consider the function $f(x, y)=c x y+x^{2} y+2 x+y^{2}-15 y+1$ defined in \mathbb{R}^{2}, with $c \in \mathbb{R}$.
(a) (1 point) Compute the gradient of f and the Hessian matrix of f. What is the largest open subset D of \mathbb{R}^{2} in which the function f is strictly convex? (Remark that D depends on c.)
(b) (1 point) For what values of c is the set D computed in part (a) convex?
(3) Consider the equation

$$
y z-x^{2} z^{3}=1
$$

(a) (0.5 points) Using the implicit function theorem prove that the above equation defines a function $z=h(x, y)$ near the point $x=1, y=2, z=1$.
(b) (1 point) Compute

$$
\frac{\partial z}{\partial x}(1,2), \quad \frac{\partial z}{\partial y}(1,2)
$$

(c) (0.5 points) Write the equation of the tangent plane to the graph of the function $z=h(x, y)$, determined in part (a), at the point $q=(1,2)$.
(4) Consider the function

$$
f(x, y)= \begin{cases}\frac{x^{2} y^{2}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) (1 point) Write the definitions of $\frac{\partial f}{\partial x}(0,0), \frac{\partial f}{\partial y}(0,0)$. Compute

$$
\frac{\partial f}{\partial x}(0,0), \quad \frac{\partial f}{\partial y}(0,0)
$$

(b) (1 point) Write the definition that $f(x, y)$ is differentiable at the point $(0,0)$. Prove that the function $f(x, y)$ is differentiable at the point $(0,0)$.
(5) (1 point) Let $f(x, y, z)=x y+z^{2}, g(u, v)=(u+v, u-2 v, 2 u+v)$ and $h(u, v)=f(g(u, v))$. Using the chain rule compute

$$
\frac{\partial h}{\partial u}, \quad \frac{\partial h}{\partial v}
$$

