(1) Consider the set $A=\left\{(x, y) \in \mathbb{R}^{2}: y^{2} \leq x-1, x \leq 5\right\}$.
(a) Draw the set A, its interior and boundary. Justify if the set A is open, closed, bounded, compact or convex.

Solution: The set A, its interior and its boundary are:

Since, the set A contain its boundary, it is closed. It does not coincide with its interior. Hence, it is not open. Graphically, we see that the set A is bounded and convex. The set A is compact.
(b) State Weierstrass' Theorem. Determine if it is possible to apply Weierstrass' Theorem to the function $f(x, y)=2 y-x$ defined on A. Draw the level curves of $f(x, y)=2 y-x$ and the direction of growth of the level curves.

Solution: The function $f(x, y)=2 y-x$ is continuous in \mathbb{R}^{2}. Hence, it is continuous in $A \subset \mathbb{R}^{2}$. In addition, the set A is compact. Weierstrass' theorem applies.

The level curves of the function f are given by the equation $2 y-x=C$ or $y=\frac{x}{2}+\frac{C}{2}, \quad C \in \mathbb{R}$. Graphically,

The arrow points in the direction of growth.
(c) Using the level curves of f above, determine if this function attains a maximum and/or a minimum on the set A. If so, compute the points where the extreme values are attained and the maximum and/or minimum values of f on the set A.

Solution: Graphically we see that the minimum value of f is attained at the points $(5,-2)$ and $f(5,-2)=-9$. The maximum value is attained at the point, say (a, b), of tangency of the line $2 y-x=C$ and the curve given by the equation $y^{2}=x-1$. Differentiating implicitely we have that

$$
2 y^{\prime}-1=0, \quad 2 y y^{\prime}=1
$$

We plug in the values $x=a, y=b$ and obtain

$$
2 y^{\prime}(a)-1=0, \quad 2 b y^{\prime}(a)=1
$$

So, we must have $b=1$. Since, (a, b) is on the curve $y^{2}=x-1$. We must have $a-1=b^{2}=1$. Hence $a=2$. The maximum is attained at the point $(2,1)$ and $f(2,1)=0$.

(2) Consider the function $f(x, y)=c x y+x^{2} y+2 x+y^{2}-15 y+1$ defined in \mathbb{R}^{2}, with $c \in \mathbb{R}$.
(a) Compute the gradient of f and the Hessian matrix of f. What is the largest open subset D of \mathbb{R}^{2} in which the function f is strictly convex? (Remark that D depends on c.)

Solution: We have
$\nabla f(x, y)=\left(c y+2 x y+2, c x+x^{2}+2 y-15\right), \quad \mathrm{H}(f)(x, y, z)=\left(\begin{array}{cc}2 y & c+2 x \\ c+2 x & 2\end{array}\right)$
Solution: We have that

$$
D_{1}=2 y, \quad D_{2}=4 y-(c+2 x)^{2}
$$

We see that $D_{1}>0$ if and only if $y>0$ and $D_{2}>0$ if and only if $y>\frac{1}{4}(c+2 x)^{2}$. Hence,

$$
D=\left\{(x, y) \in \mathbb{R}^{2}: y>\frac{1}{4}(c+2 x)^{2}\right\}
$$

(b) For what values of c is the set D computed in part (b) convex?

Solution: Consider the function

$$
g(x)=\frac{1}{4}(c+2 x)^{2}
$$

Since $g^{\prime \prime}(x)=2>0$, the function g is convex. Therefore the set $D=\left\{(x, y) \in \mathbb{R}^{2}: y>\frac{1}{4}(c+2 x)^{2}\right\}$ is convex for any value of c.
(3) Consider the equation

$$
y z-x^{2} z^{3}=1
$$

(a) Using the implicit function theorem prove that the above equation defines a function $z=h(x, y)$ near the point $x=1, y=2, z=1$.

Solution: Consider the function $f(x, y, z)=y z-x^{2} z^{3}$. We see that $f(1,2,1)=1$. Furthermore,

$$
\frac{\partial f}{\partial z}(1,2,1)=\left.\left(y-3 x^{2} z^{2}\right)\right|_{x=1, y=2, z=1}=-1 \neq 0
$$

By the implicit function theorem, the equation $f(x, y, z)=1$ defines a function $z=h(x, y)$ near the point $(1,2,1)$.
(b) Compute

$$
\frac{\partial z}{\partial x}(1,2), \quad \frac{\partial z}{\partial y}(1,2)
$$

Solution: Differentiating implicitly the equation $f(x, y, z)=1$ we have

$$
\begin{aligned}
0 & =\frac{\partial f}{\partial x}=-3 x^{2} \frac{\partial z}{\partial x} z^{2}+y \frac{\partial z}{\partial x}-2 x z^{3} \\
0 & =\frac{\partial f}{\partial y}=-3 x^{2} \frac{\partial z}{\partial y} z^{2}+y \frac{\partial z}{\partial y}+z
\end{aligned}
$$

which is valid for (x, y) near the point $(1,2)$. Substituting $x=1, y=2, z=1$ we have

$$
\begin{aligned}
& 0=-\frac{\partial z}{\partial x}(1,2)-2 \\
& 0=1-\frac{\partial z}{\partial y}(1,2)
\end{aligned}
$$

And we obtain

$$
\frac{\partial z}{\partial x}(1,2)=-2, \quad \frac{\partial z}{\partial y}(1,2)=1
$$

(c) Write the equation of the tangent plane to the graph of the function $z=h(x, y)$, determined in part (a), at the point $q=(1,2)$.

Solution: The equation of the tangent plane to the graph of the function $z=h(x, y)$ at the point $q=(1,2)$ is

$$
z=h(1,2)+\frac{\partial h}{\partial x}(1,2)(x-1)+\frac{\partial h}{\partial y}(1,2)(y-2)=1-2(x-1)+y-2
$$

(4) Consider the function

$$
f(x, y)= \begin{cases}\frac{x^{2} y^{2}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) Write the definitions of $\frac{\partial f}{\partial x}(0,0), \frac{\partial f}{\partial y}(0,0)$. Compute

$$
\frac{\partial f}{\partial x}(0,0), \quad \frac{\partial f}{\partial y}(0,0)
$$

Solution: The definitions are

$$
\begin{aligned}
& \frac{\partial f}{\partial x}(0,0)=\lim _{t \rightarrow 0} \frac{f(t, 0)-f(0,0)}{t} \\
& \frac{\partial f}{\partial y}(0,0)=\lim _{t \rightarrow 0} \frac{f(0, t)-f(0,0)}{t}
\end{aligned}
$$

We have that $f(t, 0)=f(0, t)=f(0,0)=0$. Hence, for $t \neq 0$,

$$
\frac{f(t, 0)-f(0,0)}{t}=\frac{f(0, t)-f(0,0)}{t}=0
$$

So,

$$
\frac{\partial f}{\partial x}(0,0)=0, \quad \frac{\partial f}{\partial y}(0,0)=0
$$

(b) Write the definition that $f(x, y)$ is differentiable at the point $(0,0)$. Prove that the function $f(x, y)$ is differentiable at the point $(0,0)$.

Solution:

Let

$$
g(x, y)=\frac{f(x, y)-f(0,0)-\nabla f(0,0) \cdot(x-0, y-0)}{\sqrt{x^{2}+y^{2}}}
$$

The function f is differentiable at $(0,0)$ if

$$
\lim _{(x, y) \rightarrow(0,0)} g(x, y)=0
$$

We have that

$$
f(0,0)=0, \quad \nabla f(0,0)=(0,0)
$$

Hence,

$$
g(x, y)=\frac{x^{2} y^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}}
$$

And note that

$$
0 \leq \frac{x^{2} y^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}} \leq \frac{\left(x^{2}+y^{2}\right)\left(x^{2}+y^{2}\right)}{\left(x^{2}+y^{2}\right)^{3 / 2}}=\left(x^{2}+y^{2}\right)^{1 / 2}
$$

Since the function $\left(x^{2}+y^{2}\right)^{1 / 2}$ is continuous in \mathbb{R}^{2} we have that

$$
\lim _{(x, y) \rightarrow(0,0)}\left(x^{2}+y^{2}\right)^{1 / 2}=0
$$

Therefore, $\lim _{(x, y) \rightarrow(0,0)} g(x, y)=0$ and the function f is differentiable at the point $(0,0)$.
(5) Let $f(x, y, z)=x y+z^{2}, g(u, v)=(u+v, u-2 v, 2 u+v)$ and $h(u, v)=f(g(u, v))$. Using the chain rule compute

$$
\frac{\partial h}{\partial u}, \quad \frac{\partial h}{\partial v}
$$

Solution: We have

$$
D f(x, y, z)=\left(\begin{array}{lll}
y & x & 2 z
\end{array}\right)
$$

Replacing $x=u+v, y=u-2 v, z=2 u+v$, we have

$$
D f(u+v, u-2 v, 2 u+v)=\left(\begin{array}{lll}
u-2 v & u+v & 4 u+2 v
\end{array}\right)
$$

On the other hand

$$
D g(u, v)=\left(\begin{array}{rr}
1 & 1 \\
1 & -2 \\
2 & 1
\end{array}\right)
$$

Therefore,

$$
D h(u, v)=\left(\begin{array}{lll}
u-2 v & u+v & 4 u+2 v
\end{array}\right)\left(\begin{array}{rr}
1 & 1 \\
1 & -2 \\
2 & 1
\end{array}\right)=\left(\begin{array}{ll}
10 u+3 v & 3 u-2 v
\end{array}\right)
$$

Hence,

$$
\frac{\partial h}{\partial u}=10 u+3 v, \quad \frac{\partial h}{\partial v}=3 u-2 v
$$

