
(1) Consider the set A = {(x, y) ∈ R2 : y2 ≤ x− 1, x ≤ 5}.
(a) Draw the set A, its interior and boundary. Justify if the set A is open, closed, bounded, compact

or convex.

Solution: The set A, its interior and its boundary are:
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Since, the set A contain its boundary, it is closed. It does not coincide with its interior. Hence, it
is not open. Graphically, we see that the set A is bounded and convex. The set A is compact.

(b) State Weierstrass’ Theorem. Determine if it is possible to apply Weierstrass’ Theorem to the
function f(x, y) = 2y−x defined on A. Draw the level curves of f(x, y) = 2y−x and the direction
of growth of the level curves.

Solution: The function f(x, y) = 2y − x is continuous in R2. Hence, it is continuous in A ⊂ R2.
In addition, the set A is compact. Weierstrass’ theorem applies.

The level curves of the function f are given by the equation 2y − x = C or y = x
2 + C

2 , C ∈ R.
Graphically,
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The arrow points in the direction of growth.

(c) Using the level curves of f above, determine if this function attains a maximum and/or a minimum
on the set A. If so, compute the points where the extreme values are attained and the maximum
and/or minimum values of f on the set A.

Solution: Graphically we see that the minimum value of f is attained at the points (5,−2) and
f (5,−2) = −9. The maximum value is attained at the point, say (a, b), of tangency of the line
2y−x = C and the curve given by the equation y2 = x−1. Differentiating implicitely we have that

2y′ − 1 = 0, 2yy′ = 1

We plug in the values x = a, y = b and obtain

2y′(a)− 1 = 0, 2by′(a) = 1

So, we must have b = 1. Since, (a, b) is on the curve y2 = x − 1. We must have a − 1 = b2 = 1.
Hence a = 2. The maximum is attained at the point (2, 1) and f(2, 1) = 0.
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(2) Consider the function f(x, y) = cxy + x2y + 2x + y2 − 15y + 1 defined in R2, with c ∈ R.
(a) Compute the gradient of f and the Hessian matrix of f . What is the largest open subset D of R2

in which the function f is strictly convex? (Remark that D depends on c. )

Solution: We have

∇f(x, y) =
(
cy + 2xy + 2, cx + x2 + 2y − 15

)
, H(f)(x, y, z) =

(
2y c + 2x

c + 2x 2

)
Solution: We have that

D1 = 2y, D2 = 4y − (c + 2x)2

We see that D1 > 0 if and only if y > 0 and D2 > 0 if and only if y > 1
4 (c + 2x)2. Hence,

D = {(x, y) ∈ R2 : y >
1

4
(c + 2x)2}

(b) For what values of c is the set D computed in part (b) convex?

Solution: Consider the function

g(x) =
1

4
(c + 2x)2

Since g′′(x) = 2 > 0, the function g is convex. Therefore the set D = {(x, y) ∈ R2 : y > 1
4 (c+2x)2}

is convex for any value of c.
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(3) Consider the equation
yz − x2z3 = 1

(a) Using the implicit function theorem prove that the above equation defines a function z = h(x, y)
near the point x = 1, y = 2, z = 1.

Solution: Consider the function f(x, y, z) = yz − x2z3. We see that f(1, 2, 1) = 1. Furthermore,

∂f

∂z
(1, 2, 1) =

(
y − 3x2z2

)∣∣
x=1,y=2,z=1

= −1 6= 0

By the implicit function theorem, the equation f(x, y, z) = 1 defines a function z = h(x, y) near
the point (1, 2, 1).

(b) Compute
∂z

∂x
(1, 2),

∂z

∂y
(1, 2),

Solution: Differentiating implicitly the equation f(x, y, z) = 1 we have

0 =
∂f

∂x
= −3x2 ∂z

∂x
z2 + y

∂z

∂x
− 2xz3

0 =
∂f

∂y
= −3x2 ∂z

∂y
z2 + y

∂z

∂y
+ z

which is valid for (x, y) near the point (1, 2). Substituting x = 1, y = 2, z = 1 we have

0 = −∂z

∂x
(1, 2)− 2

0 = 1− ∂z

∂y
(1, 2)

And we obtain
∂z

∂x
(1, 2) = −2,

∂z

∂y
(1, 2) = 1

(c) Write the equation of the tangent plane to the graph of the function z = h(x, y), determined in
part (a), at the point q = (1, 2).

Solution: The equation of the tangent plane to the graph of the function z = h(x, y) at the point
q = (1, 2) is

z = h(1, 2) +
∂h

∂x
(1, 2)(x− 1) +

∂h

∂y
(1, 2)(y − 2) = 1− 2(x− 1) + y − 2
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(4) Consider the function

f(x, y) =

{
x2y2

x2+y2 if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

(a) Write the definitions of ∂f
∂x (0, 0), ∂f

∂y (0, 0). Compute

∂f

∂x
(0, 0),

∂f

∂y
(0, 0)

Solution: The definitions are

∂f

∂x
(0, 0) = lim

t→0

f(t, 0)− f(0, 0)

t
∂f

∂y
(0, 0) = lim

t→0

f(0, t)− f(0, 0)

t

We have that f(t, 0) = f(0, t) = f(0, 0) = 0. Hence, for t 6= 0,

f(t, 0)− f(0, 0)

t
=

f(0, t)− f(0, 0)

t
= 0

So,
∂f

∂x
(0, 0) = 0,

∂f

∂y
(0, 0) = 0

(b) Write the definition that f(x, y) is differentiable at the point (0, 0). Prove that the function f(x, y)
is differentiable at the point (0, 0).

Solution:
Let

g(x, y) =
f(x, y)− f(0, 0)−∇f(0, 0) · (x− 0, y − 0)√

x2 + y2

The function f is differentiable at (0, 0) if

lim
(x,y)→(0,0)

g(x, y) = 0

We have that
f(0, 0) = 0, ∇f(0, 0) = (0, 0)

Hence,

g(x, y) =
x2y2

(x2 + y2)
3/2

And note that

0 ≤ x2y2

(x2 + y2)
3/2
≤ (x2 + y2)(x2 + y2)

(x2 + y2)
3/2

=
(
x2 + y2

)1/2
Since the function

(
x2 + y2

)1/2
is continuous in R2 we have that

lim
(x,y)→(0,0)

(
x2 + y2

)1/2
= 0

Therefore, lim(x,y)→(0,0) g(x, y) = 0 and the function f is differentiable at the point (0, 0).
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(5) Let f(x, y, z) = xy + z2, g(u, v) = (u + v, u− 2v, 2u + v) and h(u, v) = f(g(u, v)). Using the chain rule
compute

∂h

∂u
,

∂h

∂v

Solution: We have
Df(x, y, z) =

(
y x 2z

)
Replacing x = u + v, y = u− 2v, z = 2u + v, we have

Df(u + v, u− 2v, 2u + v) =
(
u− 2v u + v 4u + 2v

)
On the other hand

Dg(u, v) =

 1 1
1 −2
2 1


Therefore,

Dh(u, v) =
(
u− 2v u + v 4u + 2v

) 1 1
1 −2
2 1

 =
(

10u + 3v 3u− 2v
)

Hence,
∂h

∂u
= 10u + 3v,

∂h

∂v
= 3u− 2v


