University Carlos III

Department of Economics
Mathematics II. Final Exam. January 9th 2019

Last Name:	Name:	
ID number:	Degree:	Group:

IMPORTANT

- DURATION OF THE EXAM: $2 h$
- Calculators are NOT allowed.
- Scrap paper: You may use the last two pages of this exam and the space behind this page.
- Do NOT UNSTAPLE the exam.
- You must show a valid ID to the professor.

Problem	Points
1	
2	
3	
4	
5	
Total	

(1) Consider the set $A=\left\{(x, y) \in \mathbb{R}^{2}: x \geq 0, y \geq 0,2 y+x \leq 2\right\}$ and the function $f(x, y)=x-y^{2}$.
(a) (0.5 points) Draw the set A, its interior and boundary. Justify if the set A is open, closed, bounded, compact or convex.
(b) (0.5 points) State Weierstrass' Theorem. Determine if it is possible to apply Weierstrass' Theorem to the function f defined on A.
(c) (1 point) Using the level curves of f above, determine if this function attains a maximum and/or a minimum on the set A. If so, compute the points where the extreme values are attained and the maximum and/or minimum values of f on the set A.
(2) Consider the function $f(x, y, z)=a x^{2}+a y^{2}+c z^{2}+2 a b x y$ en \mathbb{R}^{2}, with $a<0, c \neq 0$.
(a) (1 point) Discuss, according to the valores of the parameters a, b and c, if the function f is strictly concave or strictly convex on \mathbb{R}^{2}.
(b) (1 point) Using the above results, determine if the set $A=\left\{(x, y, z) \in \mathbb{R}^{3}: 4-x^{2}-x y-y^{2}-z^{2} \geq 0\right\}$ is convex.
(3) Consider the equation

$$
y e^{x z}+y^{2} z=3
$$

(a) (0.5 points) Using the implicit function theorem prove that the above equation defines a function z near the point $x=0, y=1, z=2$.
(b) (1 point) Compute

$$
\frac{\partial z}{\partial x}(0,1), \quad \frac{\partial z}{\partial y}(0,1)
$$

(c) (0.5 points) Write the equation of the tangent plane to the graph of the function $z(x, y)$, computed in part (a), at the point $q=(0,1)$.
(4) Consider a function $f(x, y, z): \mathbb{R}^{3} \rightarrow \mathbb{R}$ and three functions $x(u, v), y(u, v), z(u, v): \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$. Consider the composite function $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $h(u, v)=f(x(u, v), y(u, v), z(u, v))$.
(a) (1 point) State the chain rule for

$$
\frac{\partial h}{\partial u}, \quad \frac{\partial h}{\partial v}
$$

(b) (1 point) Use part (a) to compute

$$
\frac{\partial h}{\partial u}, \quad \frac{\partial h}{\partial v}
$$

for the functions

$$
f(x, y, z)=x^{2}-y^{2}+x z
$$

and

$$
x(u, v)=2 u+v, \quad y(u, v)=u-2 v, \quad z(u, v)=u v
$$

(5) Let $f(x, y, z)=x \ln (y z)-x^{2}-y^{2}-z^{2}, v=(a, b, c) \in \mathbb{R}^{3}$.
(a) (1 point) Compute the gradient of f at the point $p=(0,1,1)$. Determine for what values of a, b, c we have that $D_{v} f(p)=0$.
(b) (1 point) Write the de Taylor polynomial of order 2 of the function $f(x, y, z)$ near the point $p=(0,1,1)$.

