University Carlos III Department of Economics Mathematics II. Final Exam. January 9th 2019

Last Name:		Name:
ID number:	Degree:	Group:

IMPORTANT

- DURATION OF THE EXAM: 2h
- Calculators are **NOT** allowed.
- Scrap paper: You may use the last two pages of this exam and the space behind this page.
- Do NOT UNSTAPLE the exam.
- You must show a valid ID to the professor.

Problem	Points
1	
2	
3	
4	
5	
Total	

1

- (1) Consider the set A = {(x, y) ∈ ℝ² : x ≥ 0, y ≥ 0, 2y + x ≤ 2} and the function f(x, y) = x y².
 (a) (0.5 points) Draw the set A, its interior and boundary. Justify if the set A is open, closed, bounded, compact or convex.
 - (b) (0.5 points) State Weierstrass' Theorem. Determine if it is possible to apply Weierstrass' Theorem to the function f defined on A.
 - (c) (1 point) Using the level curves of f above, determine if this function attains a maximum and/or a minimum on the set A. If so, compute the points where the extreme values are attained and the maximum and/or minimum values of f on the set A.
- (2) Consider the function $f(x, y, z) = ax^2 + ay^2 + cz^2 + 2abxy$ en \mathbb{R}^2 , with $a < 0, c \neq 0$.
 - (a) (1 point) Discuss, according to the valores of the parameters a, b and c, if the function f is strictly concave or strictly convex on \mathbb{R}^2 .
 - (b) (1 point) Using the above results, determine if the set $A = \{(x, y, z) \in \mathbb{R}^3 : 4-x^2-xy-y^2-z^2 \ge 0\}$ is convex.
- (3) Consider the equation

$$ye^{xz} + y^2z = 3$$

- (a) (0.5 points) Using the implicit function theorem prove that the above equation defines a function z near the point x = 0, y = 1, z = 2.
- (b) (1 point) Compute

$$\frac{\partial z}{\partial x}(0,1), \quad \frac{\partial z}{\partial y}(0,1),$$

- (c) (0.5 points) Write the equation of the tangent plane to the graph of the function z(x, y), computed in part (a), at the point q = (0, 1).
- (4) Consider a function $f(x, y, z) : \mathbb{R}^3 \to \mathbb{R}$ and three functions $x(u, v), y(u, v), z(u, v) : \mathbb{R}^2 \to \mathbb{R}^3$. Consider the composite function $h : \mathbb{R}^2 \to \mathbb{R}$ defined by h(u, v) = f(x(u, v), y(u, v), z(u, v)).
 - (a) (1 point) State the chain rule for

$$\frac{\partial h}{\partial u}, \quad \frac{\partial h}{\partial v}$$

(b) (1 point) Use part (a) to compute

$$\frac{\partial h}{\partial u}, \quad \frac{\partial h}{\partial v}$$

for the functions

$$f(x, y, z) = x^2 - y^2 + xz$$

and

$$x(u, v) = 2u + v, \quad y(u, v) = u - 2v, \quad z(u, v) = uv$$

(5) Let $f(x, y, z) = x \ln(yz) - x^2 - y^2 - z^2$, $v = (a, b, c) \in \mathbb{R}^3$.

- (a) (1 point) Compute the gradient of f at the point p = (0, 1, 1). Determine for what values of a, b, c we have that $D_v f(p) = 0$.
- (b) (1 point) Write the de Taylor polynomial of order 2 of the function f(x, y, z) near the point p = (0, 1, 1).