Last Name:	Name:	
ID number:	Degree:	Group:

IMPORTANT

- DURATION OF THE EXAM: 2h
- Calculators are NOT allowed.
- Scrap paper: You may use the last two pages of this exam and the space behind this page.
- Do NOT UNSTAPLE the exam.
- You must show a valid ID to the professor.

Problem	Points
1	
2	
3	
4	
5	
Total	

(1) Consider the set $A=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 2, x y>0\right\}$.
(a) (0.5 points) Draw the set A, its interior and boundary. Justify if the set A is open, closed, bounded, compact or convex.
(b) (0.5 points) State Weierstrass' Theorem. Determine if it is possible to apply Weierstrass' Theorem to the function $f(x, y)=y-x$ defined on A. Draw the level curves of $f(x, y)=y-x$ and the direction of growth of the level curves.
(c) (1 point) Using the level curves of f above, determine if this function attains a maximum and/or a minimum on the set A. If so, compute the points where the extreme values are attained and the maximum and/or minimum values of f on the set A.
(2) Consider the function $f(x, y)=a x^{2}+b y^{2}+2 x y+x+y+1$ in \mathbb{R}^{2}, with $a, b \in \mathbb{R}$.
(a) (1 point) Discuss, according to the valores of the parameters a and b, if the function f is strictly concave or strictly convex in \mathbb{R}^{2}.
(b) (1 point) Using the above results, determine if the set $A=\left\{(x, y) \in \mathbb{R}^{2}:-x^{2}-4 y^{2}+2 x y+x+y \geq\right.$ $6\}$ is convex.
(3) Consider the equation

$$
x^{2}+y^{2}+z^{2}+x y+2 z=1
$$

(a) (0.5 points) Using the implicit function theorem prove that the above equation defines a function $z=h(x, y)$ near the point $x=0, y=-1, z=0$.
(b) (1 point) Compute

$$
\frac{\partial z}{\partial x}(0,-1), \quad \frac{\partial z}{\partial y}(0,-1), \quad \frac{\partial^{2} z}{\partial x \partial y}(0,-1) .
$$

(c) (0.5 points) Write the equation of the tangent plane to the graph of the function $z=h(x, y)$, computed in part (a), at the point $q=(0,-1)$.
(4) Consider a function $f(x, y, z): \mathbb{R}^{3} \rightarrow \mathbb{R}$ and three functions $x(s, t), y(s, t), z(s, t): \mathbb{R}^{2} \rightarrow \mathbb{R}$. Consider the composite function $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $h(s, t)=f(x(s, t), y(s, t), z(s, t))$.
(a) (1 point) State the chain rule for

$$
\frac{\partial h}{\partial s}, \quad \frac{\partial h}{\partial t}
$$

(b) (1 point) Use part (a) to compute

$$
\frac{\partial h}{\partial s}, \quad \frac{\partial h}{\partial t}
$$

for the functions

$$
f(x, y, z)=\frac{1}{2}\left(\ln ^{2}(x)+\ln ^{2}(y)+\ln ^{2}(z)\right)
$$

and

$$
x(s, t)=e^{(s+t)}, y(s, t)=e^{(s-t)}, z(s, t)=e^{s t}
$$

(5) Let $g(x, y)=e^{a x-b y}, v=(1,-1) \in \mathbb{R}^{2}$.
(a) (1 point) Compute the gradient of g at the point $p=(0,0)$. Determine for what values of a, b we have that $D_{v} g(p)=0$.
(b) (1 point) Write the de Taylor polynomial of order 2 of the function $f(x, y)=e^{3 x-2 y}$ near the point $p=(0,0)$.

