
(1) Consider the set

A = {(x, y) ∈ R2 : y2 + x ≤ 0 ≤ x+ 5}
and the function

f(x, y) = (4y + x)5

(a) (10 points) Sketch the graph of the set A, its boundary and its interior and justify if it is open,
closed, bounded, compact or convex.
Solution: The set A, its interior and its boundary are approximately as indicated in the picture.
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And the closure coincides with A, Ā = A. The functions h(x, y) = y2 + x and g(x, y) = x+ 5 are
continuous and A = {(x, y) ∈ R2 : h(x, y) ≤ 0, g(x, y) ≥ 0}. Hence, the set A is closed (Note also
that ∂A ⊂ A). It is not open because A ∩ ∂A ̸= ∅. The set A is bounded. Therefore, the set A is
compact. It is also convex .

(b) (5 points) State Weierstrass’ Theorem. Determine if it is possible to apply Weierstrass’ Theorem
to the function f defined on A.
Solution: The set A is compact and the function f(x, y) = (4y + x)5 is continuous. Hence,
Weierstrass Theorem applies.

(c) (5 points) Draw the level curves of f , indicating the direction of growth of the function.
Solution: The level curves

f(x, y) = (4y + x)5 = D

are straight lines of the form

y = D1/5 − x

4
Graphically,

4" + $ = &

The black arrow represents the direction of growth of the function f .
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(d) (10 points) Using the level curves of f , determine (if it exists) the global minimum and max-
imum of f on the set A.
Solution: Graphically, the maximum value is attained at the point (x0, f(x0)) where the line
y = C − x

4 is tangent to the graph of the function g(x) =
√
−x. The slope of the line y = C − x

4 is

m = − 1
4 . Thus

g′(x0) =
−1

2
√
−x0

= −1

4

Therefore, x0 = −4, y0 =
√
−x0 = 2. The maximum value is attained at the point (−4, 2) and the

maximum value of the function is f(−4, 2) = (4)5.Graphically,

4" + $ = 8
(−4,2)

(−5, 5)

4" + $ = −5 + 4 5

The minimum value is attained at the point where the curves y = −
√
−x and x = −5 intersect.

That is at the point (−5,−
√
5). The minimum value is f(−5,−

√
5) = (4

√
5− 5)5.
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(2) Consider the function f(x, y, z) = 2ax2 + 4axy + 3ay2 + byz + cz2 + 13x− 20y + z defined in R3, with
a, b, c ∈ R and a ̸= 0.
(a) (8 points) Determine for which values of a, b, c the function f is strictly convex. Determine for

which values of a, b, c the function f is strictly concave.

Solution: We have

∇f(x, y, z) = (4ax+ 4ay + 13, 4ax+ 6ay + bz − 20, by + 2cz + 1}) , H(f)(x, y, z) =

 4a 4a 0
4a 6a b
0 b 2c


We obtain D1 = 4a, D2 = 8a2 > 0, D3 = |A| = 16a2c − 4ab2 = 4a

(
4ac− b2

)
. We see that for

a > 0 and c > b2

4a we have that D1, D2, D3 > 0 and the function is convex. For a < 0 and c < b2

4a
we have that D1 < 0, D2 > 0, D3 < 0 and the function is concave.

(b) (2 points) Using the results above, determine if the set D = {(x, y, z) ∈ R3 : −2x2 − 4xy+ 13x−
3y2 + yz − 20y − z2 + z ≥ 10} is convex.
Solution:
Taking a = −1, b = 1, c = −1 we obtain the function f(x, y, z) = −2x2 − 4xy + 13x− 3y2 + yz −
20y − z2 + z. Since a < 0 and c < b2

4a , the function f is concave and the set D is convex.
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(3) Consider the system of equations

2xy + z2 = 1

x+ y2 + z = 0

(a) (5 points) Using the implicit function theorem, prove that the above system of equations de-
termines implicitly two differentiable functions y(x) and z(x) in a neighborhood of the point
(x0, y0, z0) = (1, 0,−1).

Solution: We first remark that (x0, y0, z0) = (1, 0,−1) is a solution of the system of equations.
The functions f1(x, y, z) = 2xy + z2 and f2(x, y, z) = x+ y2 + z are of class C∞, because they are
polynomials. We compute∣∣∣∂(f1,f2)∂(y,z)

∣∣∣
(x,y,z)=(1,0,−1)

=

∣∣∣∣ 2x 2xz
2xy 1

∣∣∣∣
(x,y,z)=(1,0,−1)

=

∣∣∣∣ 2 −2
0 1

∣∣∣∣ = 2

By the implicit function theorem, the above system of equations determines implicitly two differen-
tiable functions y(x) and z(x) in a neighborhood of the point (x0, y0, z0) = (1, 0,−1).

(b) (10 points) Compute

y′(1), z′(1)

Solution: Differentiating implicitly with respect to x,

0 = 2xy′(x) + 2y(x) + 2z(x)z′(x)

0 = 2y(x)y′(x) + z′(x) + 1

We plug in the values (x0, y0, z0) = (1, 0,−1) to obtain

0 = 2y′(1)− 2z′(1)

0 = z′(1) + 1

Therefore

y′(1) = −1, z′(1) = −1

(c) (5 points) Compute Taylor’s polynomial of order 1 of the functions y(x) and z(x) at the point
x0 = 1.
Solution: Taylor’s polynomial of order 1 of the functions y(x) at the point x0 = 1 is

P1(x) = y(x0) + y′(x0)(x− x0) = 1− x

Taylor’s polynomial of order 1 of the function z(x) at the point x0 = 1 is

P1(x) = z(x0) + z′(x0)(x− x0) = −x

(d) (5 points) Compute Taylor’s polynomial of order 2 of the functions y(x) and z(x) at the point
x0 = 1.
Solution: Differentiating implicitly with respect to x the following system of equations

0 = 2xy′(x) + 2y(x) + 2z(x)z′(x)

0 = 2y(x)y′(x) + z′(x) + 1

we obtain

0 = 2xy′′(x) + 4y′(x) + 2z(x)z′′(x) + 2z′(x)2

0 = 2y(x)y′′(x) + 2y′(x)2 + z′′(x)

We plug in the values (x0, y0, z0) = (1, 0,−1), y′(1) = z′(1) = −1 to obtain

0 = 2y′′(1)− 2z′′(1)− 2

0 = z′′(1) + 2

Hence, z′′(1) = −2 and y′′(1) = −1. Taylor’s polynomial of order 2 of the function y(x) at the
point x0 = 1 is

P2(x) = y(x0) + y′(x0)(x− x0) +
y′′(x0)

2
(x− x0)

2 = 1− x− 1

2
(x− 1)2
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Taylor’s polynomial of order 2 of the function z(x) at the point x0 = 1 is

P2(x) = z(x0) + z′(x0)(x− x0) +
z′′(x0)

2
(x− x0)

2 = −x− (x− 1)2
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(4) Consider the function

f(x, y) =

{
xy2

x2+y2 if (x, y) ̸= (0, 0)

0 if (x, y) = (0, 0)

(a) (5 points) Is the function f continuous at (0, 0)?

Solution: We have

0 ≤ |f(x, y)− f(0, 0)| =
∣∣∣∣ xy2

x2 + y2

∣∣∣∣ ≤ |x|

By the squeeze Theorem, lim(x,y)→(0,0) f(x, y) = f(0, 0) = 0. Hence, f is continuous at (0, 0).

(b) (5 points) Compute ∇f(0, 0).

Solution: ∇f(0, 0) = (0, 0).

(c) (5 points) Is the function f differentiable at (0, 0)?

Solution:

lim
(x,y)→(0,0)

f(x, y)− f(0, 0)− (0, 0) · (x, y)√
x2 + y2

= lim
(x,y)→(0,0)

f(x, y)√
x2 + y2

= lim
(x,y)→(0,0)

xy2

(x2 + y2)
3/2

We prove that the above limit does not exist. Consider the function

g(x, y) =
xy2

(x2 + y2)
3/2

Note that

lim
t→0

g(t, 0) = lim
t→0

0

(2t2)
3/2

= 0

and note that

lim
t→0

g(t, t) = lim
t→0

t3

(2t2)
3/2

=
1

(2)
3/2

̸= 0

so the limit

lim
(x,y)→(0,0)

xy2

(x2 + y2)
3/2

does not exist and we conclude that f is not differentiable at the point (0, 0).
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(5) (10 points) Consider the function f(u, v) : R2 −→ R and the functions u(x, y, z), v(x, y, z) : R3 −→ R
defined by

f(u, v) = u2 + uv and u(x, y, z) = ex + y2 + z, v(x, y, z) = x2 + ey
2

+ ln(z)

And consider the composition h : R3 −→ R defined by h(x, y, z) = f(u(x, y, z), v(x, y, z)). Use the the
chain rule to compute

∂h

∂x
(0, 0, 1),

∂h

∂y
(0, 0, 1),

∂h

∂z
(0, 0, 1)

Solution:
u(0, 0, 1) = 2, v(0, 0, 1) = 1

Df(u, v) = (2u+ v, u) , Df(2, 1) = (5, 2)

Let g(x, y, z) = (u(x, y, z), v(x, y, z)) = (ex + y2 + z, x2 + ey
2

+ ln(z)). We have

Dg(x, y, z) =

(
ex 2y 1

2x 2ey
2

y 1
z

)
, Dg(0, 0, 1) =

(
1 0 1
0 0 1

)
By the chain rule,(

∂h

∂u
(0, 0, 1)

∂h

∂v
(0, 0, 1)

)
= Df(2, 1)Dg(0, 0, 1) = (5, 2)

(
1 0 1
0 0 1

)
= (5, 0, 7)

Therefore,
∂h

∂x
(0, 0, 1) = 5,

∂h

∂y
(0, 0, 1) = 0,

∂h

∂z
(0, 0, 1) = 7
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(6) Consider the surface given by the equation

x2y − 5xyz + 2yz = 16

(a) (5 points) Write the equation of the tangent plane to the surface at the point p = (−1, 2, 1).

Solution: Consider the funcion f(x, y, z) = x2y − 5xyz + 2yz. It is a C∞ function. The gradient
of the function f is ∇f(x, y, z) =

(
2xy − 5yz, x2 − 5xz + 2z, 2y − 5xy

)
. At the point p = (−1, 2, 1)

we get ∇f(−1, 2, 1) = (−14, 8, 14}). The equation of the tangent plane is

−14(x+ 1) + 8(y − 2) + 14(z − 1) = 0

or 14x− 8y − 14z = −44.

(b) (5 points) Write the parametric equations of the normal line to the surface at the point p =
(−1, 2, 1).

Solution: From the previous part we have that the parametric equations of the normal line are

(x, y, z) = (−1, 2, 1) + t(−14, 8, 14)

That is,
x = −1− 14t, y = 2 + 8t, z = 1 + 14t


