
(1) Consider the set

A = {(x, y) ∈ R2 : x2 − 4 ≤ y ≤ 4− x2}
and the function

f(x, y) = (2x− y)3

(a) (10 points) Sketch the graph of the set A, its boundary and its interior and justify if it is open,
closed, bounded, compact or convex.
Solution: The set A, its interior and its boundary are approximately as indicated in the picture.
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$ = 4 − ()$ = 4 − () $ = 4 − ()

$ = () − 4 $ = () − 4 $ = () − 4

And the closure coincides with A, Ā = A. The functions h(x, y) = x2−4−y and g(x, y) = x2−4+y
are continuous and A = {(x, y) ∈ R2 : h(x, y) ≤ 0, g(x, y) ≤ 0}. Hence, the set A is closed (Note
also that ∂A ⊂ A). It is not open because A∩ ∂A ̸= ∅. The set A is bounded. Therefore, the set A
is compact. It is also convex .

(b) (5 points) State Weierstrass’ Theorem. Determine if it is possible to apply Weierstrass’ Theorem
to the function f(x, y) = (2x− y)3 defined on A.
Solution: The set A is compact and the function f(x, y) = (2x − y)3 is continuous. Hence,
Weierstrass Theorem applies.

(c) (5 points) Draw the level curves of f , indicating the direction of growth of the function.
Solution: The level curves

f(x, y) = (2x− y)3 = D

are straight lines of the form

y = 2x−D1/3

Graphically,

! = 4 − %&

! = %& − 4

The black arrow represents the direction of growth of the function f .
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(d) (10 points) Using the level curves of f , determine (if it exists) the global minimum of f on the
set A.
Solution: Graphically the minimum value is attained at the point (x0, f(x0)) where the line
y = 2x − D1/3 is tangent to the graph of the function g(x) = 4 − x2. The slope of the line
y = 2x − D1/3 is m = 2. Thus g′(x0) = −2x0 = −2. Therefore x0 = −1, y0 = 4 − x2

0 = 3.
The minimum value is attained at the point (−1, 3) and the minimum value of the function is
f(−1, 3) = (−5)3 = −125.
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(2) Consider the function f(x, y, z) = 2abyz + ax2 + 2axy + 2ay2 + cz2 + 3x+ y + 15z − 73 defined in R3,
with a, b, c ∈ R abc ̸= 0.
(a) (8 points) Determine for which values of a, b, c the function f is strictly convex. Determine for

which values of a, b, c the function f is strictly concave.

Solution: We have

∇f(x, y, z) = (2ax+ 2ay + 3, 2abz + 2ax+ 4ay + 1, 2aby + 2cz + 15) , H(f)(x, y, z) =

 2a 2a 0
2a 4a 2ab
0 2ab 2c


We obtain D1 = 2a, D2 = 4a2 > 0, D3 = |A| = 8a2c − 8a3b2 = 8a2

(
c− ab2

)
. We see that for

a > 0 and c > ab2 we have that D1, D2, D3 > 0 and the function is convex. For a < 0 and c < ab2

we have that D1 < 0, D2 > 0, D3 < 0 and the function is concave.
(b) (2 points) Using the results above, determine if the set D = {(x, y, z) ∈ R3 : −x2 − 2xy + 3x −

2y2 − 4yz + y − 5z2 + 15z ≥ 0} is convex.
Solution:
Taking a = −1, b = 2, c = −5 we obtain the function f(x, y, z) = −x2 − 2xy + 3x − 2y2 − 4yz +
y − 5z2 + 15z − 73. Since c < ab2, the function f is concave and the set D is convex.
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(3) Consider the system of equations

2xy + xz2 = 1

xy2 + z = −1

(a) (5 points) Using the implicit function theorem, prove that the above system of equations de-
termines implicitly two differentiable functions y(x) and z(x) in a neighborhood of the point
(x0, y0, z0) = (1, 0,−1).

Solution: We first remark that (x0, y0, z0) = (1, 0,−1) is a solution of the system of equations.
The functions f1(x, y, z) = 2xy + xz2 and f2(x, y, z) = xy2 + z are of class C∞. We compute∣∣∣∂(f1,f2)∂(y,z)

∣∣∣
(x,y,z)=(1,0,−1)

=

∣∣∣∣ 2x 2xz
2xy 1

∣∣∣∣
(x,y,z)=(1,0,−1)

=

∣∣∣∣ 2 −2
0 1

∣∣∣∣ = 2

By the implicit function theorem, the above system of equations determines implicitly two differen-
tiable functions y(x) and z(x) in a neighborhood of the point (x0, y0, z0) = (1, 0,−1).

(b) (10 points) Compute
y′(1), z′(1)

Solution: Differentiating implicitly with respect to x,

0 = 2xy′(x) + 2y(x) + 2xz(x)z′(x) + z(x)2

0 = 2xy(x)y′(x) + y(x)2 + z′(x)

We plug in the values (x0, y0, z0) = (1, 0,−1) to obtain

0 = 2y′(1)− 2z′(1) + 1

0 = z′(1)

Therefore

y′(1) = −1

2
, z′(1) = 0

(c) (5 points) Compute Taylor’s polynomial of order 1 of the functions y(x) and z(x) at the point
x0 = 1.
Solution: Taylor’s polynomial of order 1 of the function y(x) at the point x0 = 1 is

P1(x) = y(x0) + y′(x0)(x− x0) =
1− x

2

Taylor’s polynomial of order 1 of the function z(x) at the point x0 = 1 is

P1(x) = z(x0) + z′(x0)(x− x0) = −1



5

(4) Consider the function f(x, y) = −ay + xy3 − 2xy + 4x − y2 + 1, the point p = (−1, 1) and the vector
v = (5, 3). Here a ∈ R.

(a) (5 points) Compute the gradient of f at the point p. Compute the vector u = (u0, u1) with
u2
0 + u2

1 = 1 such that Duf(p) attains the largest value. Compute the vector w = (w0, w1) with
w2

0 + w2
1 = 1 such that Dwf(p) attains the least value.

Solution: We have

∇f(x, y) =
(
y3 − 2y + 4,−a+ 3xy2 − 2x− 2y

)
Hence,

∇f(−1, 1) = (3,−a− 3)

And

u =
1√

9 + (a+ 3)2
(3,−a− 3) , w =

1√
9 + (a+ 3)2

(−3, a+ 3)

(b) (5 points) Compute Dvf(p). Compute the value of a if we now that v is perpendicular to the
tangent plane to f at the point p.

Solution: Since,

Dvf(p) = v · ∇f(p) = (3,−a− 3) · (5, 3) = 6− 3a = 0

we have that a = 2.

(c) (5 points) Assuming that a = 2, compute the equation of the tangent plane to the graph of the
function f at the point (p, f(p)).

Solution: The equation of the tangent plane is

z = f(−1, 1) +∇f(p) · (x+ 1, y − 1) = −5 + (3,−5) · (x+ 1, y − 1) =

= −5 + 3(x+ 1)− 5(y − 1)

(d) (5 points) Assuming that a = 2, compute the Hessian matrix of the función f at the point p.
Compute Taylor’s polynomial of second order of the function f at the point p.

Solution: The hessian matrix is

H f(x, y) =

(
0 3y2 − 2

3y2 − 2 6xy − 2

)
Hence,

H f(−1, 1) =

(
0 1
1 −8

)
Taylor’s second order polynomial of the function f at the point p is

P2(x, y) = f(−1, 1) +∇f(p) · (x+ 1, y − 1) +
1

2
(x+ 1, y − 1)H f(−1, 1)

(
x+ 1
y − 1

)
=

= −5 + 3(x+ 1)− 5(y − 1) +
1

2

(
0 · (x+ 1)2 + 2(x+ 1)(y − 1)− 8(y − 1)2

)
= xy + 2x− 4y2 + 4y − 2
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(5) (5 points) Consider the function f(x, y, z) : R3 −→ R and the functions x(u, v), y(u, v), z(u, v) : R2 −→
R defined by

f(x, y, z) = x2y + xz and x(u, v) = eu, y(u, v) = uv, z(u, v) = ln v

And consider the composition h : R2 −→ R defined by h(u, v) = f(x(u, v), y(u, v), z(u, v)). Use the the
chain rule to compute

∂h

∂u
(0, 1),

∂h

∂v
(0, 1)

at the point (u0, v0) = (0, 1).

Solution:
x(0, 1) = 1, y(0, 1) = 0, z(0, 1) = 0

Df(x, y, z) =
(
2xy + z, x2, x

)
, Df(1, 0, 0) = (0, 1, 1)

Let g(u, v) = (x(u, v), y(u, v), z(u, v)) = (uv, u− v, u+ 2v). We have

Dg(u, v) =

 eu 0
v u
0 1

v

 , Dg(0, 1) =

 1 0
1 0
0 1


By the chain rule,(

∂h

∂u
(0, 1)

∂h

∂v
(0, 1)

)
= Df(1, 0, 0)Dg(0, 1) = (0, 1, 1)

 1 0
1 0
0 1

 = (1, 1)

Therefore,
∂h

∂u
(0, 1) = 1

∂h

∂v
(0, 1) = 1
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(6) Consider the surface given by the equation

3x2 + 2y2 + 5z2 = 56

(a) (5 points) Write the equation of the tangent plane to the surface at the point p = (−1, 2,−3).

Solution:
The equation of the normal line is

x = −1− 6t, y = 2 + 8t, z = −3− 30t

(b) (5 points) Write the parametric equations of the normal line to the surface at the point p =
(−1, 2,−3).

Solution:
The equation of the normal line is

x = −1− 6t, y = 2 + 8t, z = −3− 30t


