University Carlos III Mathematics for Economics I. Final Exam. January 20th 2023

Last Name:	Name:	
Degree:	Group:	

IMPORTANT

- DURATION OF THE EXAM: 2h
- Calculators are **NOT** allowed.
- Scrap paper: You may use the last two pages of this exam and the space behind this page.
- **Do NOT UNSTAPLE** the exam.
- You must show a valid ID to the professor.

Problem	Points
1	
2	
3	
4	
5	
6	
Total	

(1) Consider the set

$$A = \{(x, y) \in \mathbb{R}^2 : x^2 - 4 \le y \le 4 - x^2\}$$

and the function

$$f(x,y) = (2x-y)^3$$

- (a) (10 points) Sketch the graph of the set A, its boundary and its interior and justify if it is open, closed, bounded, compact or convex.
- (b) (5 points) State Weierstrass' Theorem. Determine if it is possible to apply Weierstrass' Theorem to the function $f(x, y) = (2x y)^3$ defined on A.
- (c) (5 points) Draw the level curves of f, indicating the direction of growth of the function.
- (d) (10 points) Using the level curves of f, determine (if it exists) the global minimum of f on the set A.
- (2) Consider the function $f(x, y, z) = 2abyz + ax^2 + 2axy + 2ay^2 + cz^2 + 3x + y + 15z 73$ defined in \mathbb{R}^3 , with $a, b, c \in \mathbb{R}$ $abc \neq 0$.
 - (a) (8 points) Determine for which values of a, b, c the function f is strictly convex. Determine for which values of a, b, c the function f is strictly concave.
 - (b) (2 points) Using the results above, determine if the set $D = \{(x, y, z) \in \mathbb{R}^3 : -x^2 2xy + 3x 2y^2 4yz + y 5z^2 + 15z \ge 0\}$ is convex.
- (3) Consider the system of equations

$$2xy + xz^2 = 1$$
$$xy^2 + z = -1$$

- (a) (5 points) Using the implicit function theorem, prove that the above system of equations determines implicitly two differentiable functions y(x) and z(x) in a neighborhood of the point $(x_0, y_0, z_0) = (1, 0, -1)$.
- (b) (10 points) Compute

- (c) (5 points) Compute Taylor's polynomial of order 1 of the functions y(x) and z(x) at the point $x_0 = 1$.
- (4) Consider the function $f(x, y) = -ay + xy^3 2xy + 4x y^2 + 1$, the point p = (-1, 1) and the vector v = (5, 3). Here $a \in \mathbb{R}$.
 - (a) (5 points) Compute the gradient of f at the point p. Compute the vector $u = (u_0, u_1)$ with $u_0^2 + u_1^2 = 1$ such that $D_u f(p)$ attains the largest value. Compute the vector $w = (w_0, w_1)$ with $w_0^2 + w_1^2 = 1$ such that $D_w f(p)$ attains the least value.
 - (b) (5 points) Compute $D_v f(p)$. Compute the value of a if we now that v is perpendicular to the level curve of f that goes though the point p. That is, v is perpendicular to the curve $\{(x, y) \in \mathbb{R}^2 : f(x, y) = f(p)\}.$
 - (c) (5 points) Assuming that a = 2, compute the equation of the tangent plane to the graph of the function f at the point (p, f(p)).
 - (d) (5 points) Assuming that a = 2, compute the Hessian matrix of the function f at the point p. Compute Taylor's polynomial of second order of the function f at the point p.
- (5) (10 points) Consider the function $f(x, y, z) : \mathbb{R}^3 \longrightarrow \mathbb{R}$ and the functions $x(u, v), y(u, v), z(u, v) : \mathbb{R}^2 \longrightarrow \mathbb{R}$ defined by

 $f(x, y, z) = x^2y + xz$ and $x(u, v) = e^u$, y(u, v) = uv, $z(u, v) = \ln v$

And consider the composition $h : \mathbb{R}^2 \longrightarrow \mathbb{R}$ defined by h(u, v) = f(x(u, v), y(u, v), z(u, v)). Use the the chain rule to compute

$$\frac{\partial h}{\partial u}(0,1), \quad \frac{\partial h}{\partial v}(0,1)$$

(6) Consider the surface given by the equation

$$3x^2 + 2y^2 + 5z^2 = 56$$

- (a) (5 points) Write the equation of the tangent plane to the surface at the point p = (-1, 2, -3).
- (b) (5 points) Write the parametric equations of the normal line to the surface at the point p = (-1, 2, -3).