1. The function f is defined by $f(x) = \begin{cases} 2 - 4(x - 4)^2 & \text{if } 3 \leq x \leq 4 \\ 2 + 4(x - 4)^2 & \text{if } 4 \leq x \leq 5 \end{cases}$.

a) Find the range of f and find the inverse function f^{-1}.

b) Sketch the graph of the inverse function f^{-1}. Find its domain and its range.

Hint: sketch the graph of the function f and observe if it is an increasing or decreasing function.

1 point.

a) The function f is continuous and strictly increasing on its domain. Finding the values of $f(3) = -2$ and $f(5) = 6$ we know that the range of the function is $[-2, 6]$.

In order to find the inverse function f^{-1}, firstly, we consider f defined on the subdomain $[3, 4]$, whose range is the interval $[-2, 2]$.

$y = 2 - 4(x - 4)^2 \iff (x - 4)^2 = \frac{2 - y}{4} \iff x - 4 = -\sqrt{\frac{2 - y}{4}} \iff x = 4 - \frac{\sqrt{2 - y}}{2};$

So, $f^{-1}(x) = 4 - \frac{\sqrt{2 - x}}{2}$, whenever $x \in [-2, 2]$.

Secondly, we consider f defined on the subdomain $[4, 5]$, whose range is the interval $[2, 6]$.

$y = 2 + 4(x - 4)^2 \iff (x - 4)^2 = \frac{y - 2}{4} \iff x - 4 = \sqrt{\frac{y - 2}{4}} \iff x = 4 + \frac{\sqrt{y - 2}}{2};$

So, $f^{-1}(x) = 4 + \frac{\sqrt{x - 2}}{2}$, whenever $x \in [2, 6]$.

Thus we have: $f^{-1}(x) = \begin{cases} 4 - \frac{\sqrt{2 - x}}{2} & \text{si } -2 \leq x \leq 2 \\ 4 + \frac{\sqrt{x - 2}}{2} & \text{si } 2 \leq x \leq 6 \end{cases}$.

b) To sketch the graph of the inverse function f^{-1}, it is useful to bear in mind that as f is strictly increasing it will also be its inverse function.

We also know that for the inverse function f^{-1}, the domain is $[-2, 6]$, the range is $[3, 5]$ and $f(2) = 4$.

And furthermore, since f is concave on the interval $[3, 4]$ and convex on the interval $[4, 5]$, thus f^{-1} is convex on $[-2, 2]$ and concave on $[2, 6]$.

Thus, the graph of f^{-1} will approximatly be:
2. The function \(f \) is defined by

\[
 f(x) = \begin{cases}
 x^3, & \text{if } x < 0 \\
 1 + x^2, & \text{if } x = 0 \\
 a, & \text{if } x > 0 \\
 \ln(x^2 + 1), & \text{if } x > 0
\end{cases}
\]

where \(a \in \mathbb{R} \), is a real number.

a) Find the value of \(a \) giving your justification, if there is any, such that the function \(f \) is continuous and/or differentiable at \(x = 0 \).

b) Find the vertical, horizontal and oblique asymptotes of the function \(f \) for each value of \(a \).

1 point.

a) Firstly, in order to study whether the function is continuous at the point \(x = 0 \), we calculate the sided limits of \(f(x) \) at \(x = 0 \).

\[
 \lim_{x \to 0^-} f(x) = 0, \quad f(0) = a, \quad \lim_{x \to 0^+} f(x) = \frac{0}{0} = (L'Hospital) = \lim_{x \to 0^+} \frac{2x}{x^2 + 1} = 0;
\]

In this case, \(f \) is continuous at \(x = 0 \) when \(a = 0 \).

Now, if we suppose that \(f(x) \) is continuous at \(x = 0 \), \(f(x) \) is differentiable at \(x = 0 \) when

\[
 \lim_{x \to 0^-} f'(x) = \lim_{x \to 0^+} f'(x). \quad \text{But:}
\]

\[
 \lim_{x \to 0^-} f'(x) = \lim_{x \to 0^+} \frac{3x^2(1 + x^2) - x^32x}{(1 + x^2)^2} = 0.
\]

and, \(\lim_{x \to 0^+} f'(x) = \lim_{x \to 0^+} \frac{2x/(x^2 + 1)}{x^2} = \lim_{x \to 0^+} \frac{2x}{x^2} = 1 \).

Calculating the value of both limits apart:

\[
 \lim_{x \to 0^+} \frac{2x/(x^2 + 1)}{x^2} = \lim_{x \to 0^+} \frac{2}{x^2 + 1} = 2. \quad \text{And the other one,}
\]

\[
 \lim_{x \to 0^+} \frac{\ln(x^2 + 1)}{x^2} = \lim_{x \to 0^+} \frac{2x/(x^2 + 1)}{2x} = 1.
\]

We finally obtain \(\lim_{x \to 0^+} f'(x) = 1 \).

Thus, we can assert that \(f(x) \), in no case is differentiable at \(x = 0 \).

b) Obviously, vertical asymptotes do not exist. To find asymptotes at infinity:

\[
 \lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x^3}{x} = 1,
\]

\[
 \lim_{x \to \infty} f(x) - x = \lim_{x \to \infty} \frac{x^3}{1 + x^2} - \frac{x(1 + x^2)}{1 + x^2} = \lim_{x \to \infty} \frac{-x}{1 + x^2} = 0
\]

Then \(f \) has an oblique asymptote \(y = x \) at \(-\infty \).

\[
 \lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{\ln(x^2 + 1)}{x} = \lim_{x \to \infty} \frac{2x}{x^2 + 1} = 0
\]

Thus the function has a horizontal asymptote \(y = 0 \) at \(\infty \).
3. Consider the equation $x + e^{4x} = b$.

a) Prove that there is always only one solution of the given equation.

b) Find out, when $b = 0$, the solution of the equation with an absolute error less than 0.25.

1 point.

a) The function $f(x) = x + e^{4x}$ is strictly increasing on \mathbb{R}, from its first derivative $f'(x) = 1 + 4e^{4x} > 0$.

Therefore, if there is any solution, there is only one.

In order to prove that there is a solution of the equation we should notice that the function is continuous on its domain and from

$$\lim_{x \to -\infty} f(x) = -\infty, \quad \lim_{x \to \infty} f(x) = \infty, \quad \text{(range (f) = } \mathbb{R})$$

we can state that the solution always exits for each $b \in \mathbb{R}$ and it is unique.

b) First, we try with $f(0) = 1 > 0$. So since the function is strictly increasing, we know the root is to the left of (i.e. smaller than) $x = 0$.

Since $f(-1) = -1 + e^{-4} = -1 + \frac{1}{e^4} < -1 + \frac{1}{16} < 0$, using Bolzano’s Theorem the root is in the interval $(-1, 0)$.

Finally, if we try the midpoint of the above interval, since $f(-\frac{1}{2}) = -\frac{1}{2} + \frac{1}{e^{2}} < -\frac{1}{2} + \frac{1}{4} < 0$. then we know for the same reason as above, the root is in the interval $(-\frac{1}{2}, 0)$, and in this case we can take the midpoint $x = -\frac{1}{4}$ as an approximate value of the root with an absolute error of less than 0.25.
4. The function f is defined by $f(x) = \begin{cases} x^2 - 1 & \text{if } x < 0 \\ 1 - 2x & \text{if } 0 \leq x \end{cases}$, and we consider the function $f: [a, b] \rightarrow \mathbb{R}$, where $a < b$ are real numbers.

a) Write down Weierstrass' Theorem and find the values of a and b such that the hypothesis (or initial condition) is true in the theorem.

b) Find the values of a and b such that the hypothesis is NOT satisfied but the thesis (or conclusion) is.

Hint: Draw the graph of the function.

1 point.

a) The hypothesis (conditions) is satisfied when the function is continuous. Therefore this happens when $0 \leq a$ or when $b < 0$.

b) On the one hand the hypothesis is not satisfied when the function f is discontinuous, this is the case when $a < 0 \leq b$.

On the other hand, for each value of a and b the function always attains its global maximum.

In order to determine the solution, we just need to consider the case that f is discontinuous and attains its global minimum. Since the function is only left handed discontinuous at $x = 0$ and since \[\lim_{x \to 0^-} f(x) = -1 < f(0), \] and we notice that $f(x) \leq -1 \iff x \geq 1$
then, $f(x)$ is discontinuous and satisfies the thesis when $a < 0 < 1 \leq b$.

Look at the graph of f in order to fully understand the situation.
5. Let \(A = \{(x, y) \in \mathbb{R}^2 : x^2 - 2x + 1 \leq y \leq -x^2 + 2x + 1\} \) be a set of points.

a) Draw the set \(A \) and obtain the maximum, the minimum, the maximal elements and minimal elements of the set \(A \) if they exist.

b) Calculate the area of the region given by the set \(A \).

Hint: The Pareto ordering is: \((x_0, y_0) \leq_P (x_1, y_1) \iff x_0 \leq x_1, y_0 \leq y_1\).

1 point.

a) \(f(x) = x^2 - 2x + 1 \) describes a convex parabola whose vertex is the point \((1, 0)\), since \(f'(1) = 0, f(1) = 0, f''(1) > 0 \).

\(g(x) = -x^2 + 2x + 1 \) describes a concave parabola whose vertex is the point \((1, 2)\), since \(g'(1) = 0, g(1) = 2, g''(1) < 0 \).

To find the points \((x, y)\) of intersection on both parabolas we solve the equation:

\[x^2 - 2x + 1 = -x^2 + 2x + 1 \iff 2x^2 = 4x \iff x = 0, x = 2. \]

to obtain: \((0, 1), (2, 1)\).

Thus the region bound by set \(A \) is:

![Graph of set A](image)

It is certain that there are neither \(\max(A) \) nor \(\min(A) \), since

- maximal points of \((A) = \{(x, y) : y = -x^2 + 2x + 1, 1 \leq x \leq 2\}\)
- minimal points of \((A) = \{(x, y) : y = x^2 - 2x + 1, 0 \leq x \leq 1\}\).

b) The area of the region is:

\[
\int_0^2 [(x^2 - 2x + 1) - (2x^2 - 4x + 1)]dx = \int_0^2 (-2x^2 + 4x)dx = \left[-\frac{2x^3}{3} + 2x^2 \right]_0^2 = \frac{-16}{3} + 8 = \frac{8}{3} \text{ area units.}
\]
6. Given the function \(F(x) = \int_{-2}^{x} t^3 e^{-t^2} \, dt \), defined at \(x \in [-2, 2] \).

a) Find the intervals in which \(F(x) \) is increasing/decreasing. Find the local and/or global maxima and minima of \(F(x) \).

b) Find the intervals in which \(F(x) \) is convex/concave. Locate any inflection points of \(F(x) \).

Notice: It is neither necessary nor helpful to find the primitive function of \(f(x) = x^3 e^{-x^2} \).

1 point.

a) Referring to the Fundamental Theorem of Calculus we know that \(F'(x) = x^3 e^{-x^2} \). Therefore, the following is satisfied:
\[
F'(x) < 0 \iff x < 0; F'(x) > 0 \iff x > 0.
\]
So we know that \(F(x) \) is strictly decreasing on the interval \((-2, 0)\) and strictly increasing on the interval \((0, 2)\).
Firstly we can conclude that \(F(x) \) attains its global (and local) minimum at \(x = 0 \).
And secondly, to find the maximum of the function \(F(x) \), since \(f(x) = x^3 e^{-x^2} \) is an odd function, then
\[
\int_{-2}^{0} t^3 e^{-t^2} \, dt = -\int_{0}^{2} t^3 e^{-t^2} \, dt \text{ and we know that } F(-2) = 0 = F(2).
\]
We can conclude that \(F(x) \) attains its global maximum at the points \(x = -2, x = 2 \).

b) Since \(F''(x) = f'(x) = x^2(-2x^2 + 3)e^{-x^2} \), then:
\[
F''(x) = 0 \iff x = 0, x = \pm \sqrt{\frac{3}{2}}.
\]
Furthermore, since
\[
F''(x) < 0 \iff x \in (-2, -\sqrt{\frac{3}{2}}) \cup (\sqrt{\frac{3}{2}}, 2); \text{ (these are two different open intervals where the function is concave) and}
\]
\[
F''(x) > 0 \iff x \in (-\sqrt{\frac{3}{2}}, \sqrt{\frac{3}{2}}); \text{ (this is an open interval where the function is convex}).
\]
We can thus state that the function has two inflection points at \(x = \pm \sqrt{\frac{3}{2}} \).
A sketch of the graph of \(F \) is: