1. Compute the following limits:
 a) \(\lim_{x \to \infty} (1 + x)^{1/x} \)
 b) \(\lim_{x \to 0^+} x \ln x \)
 c) \(\lim_{x \to \infty} x^{1/x} \)
 d) \(\lim_{x \to 1^+} \left(\frac{1}{\ln x} - \frac{2}{x - 1} \right) \)
 e) \(\lim_{x \to \infty} x \tan(1/x) \)
 f) \(\lim_{x \to 0} \frac{\arcsin x - \arctan x}{x} \)

2. Compute the asymptotes of the following functions:
 a) \(f(x) = \frac{2x^3 - 3x^2 - 8x + 4}{x^2 - 4} \)
 b) \(f(x) = \frac{x^3}{x^3 + x^2 + x + 1} \)
 c) \(f(x) = 2x + e^{-x} \)
 d) \(f(x) = \frac{\sin x}{x} \)
 e) \(f(x) = \sqrt{x^2 + 1} \)
 f) \(f(x) = \frac{3x^2 - x + 2 \sin x}{x - 7} \)
 g) \(f(x) = \frac{e^x}{x} \)
 h) \(f(x) = xe^{1/x} \)
 i) \(f(x) = \frac{x}{e^x - 1} \)

3. (*)Find the Taylor polynomial of order 2 in \(a \) and, using that polynomial, compute the approximate value of the function on \(x = a + 0.1 \):
 a) \(f(x) = e^x \) in \(a = 0 \)
 b) \(f(x) = \sin x \) in \(a = 0 \)
 c) \(f(x) = \frac{\ln x}{x} \) in \(a = 1 \)

4. (*)Given the Taylor polynomial of order 2 in \(a = 0 \) of \(f \), determine if the function has a local maximum or minimum at the point \((0, f(0)) \).
 a) \(P(x) = 1 + 2x^2 \)
 b) \(P(x) = 1 + x + x^2 \)
 c) \(P(x) = 1 - 2x^2 \)

5. Compute the (absolute and local) maxima and minima of \(f \) in the given intervals:
 a) (*) \(f(x) = 3x^{2/3} - 2x \) in \([-1, 2]\).
 b) \(f(x) = xe^{-x} \) in \([1/2, \infty), \ [0, \infty) \) and \(\mathbb{R} \).

6. (*)Compute in which point the slope of the tangent line to the graph of the function \(f(x) = -x^3 + 2x^2 + x + 2 \) takes its maximum value.

7. The first (*) and second drawings show the graphs of the derivatives of different functions \(f \). Determine the increasing/decreasing, concavity/convexity intervals of \(f \), and its local extreme and inflection points.

8. The following drawing shows the graph of the second derivative of \(f \). Determine the convexity intervals of \(f \) and the inflection points. Determine where the function is increasing and decreasing and the relative extrema of \(f \) assuming that \(f(-3) = f(0) = 0 \).
9. Let \(f(x) = \begin{cases} x^\alpha & \text{if } 0 \leq x \leq 1 \\ x^\beta & \text{if } 1 \leq x \end{cases} \) Discuss, depending on the values of \(\alpha \) y \(\beta \), when \(f \) is concave or convex.

10. (*)Let \(f : \mathbb{R} \rightarrow \mathbb{R} \) convex, and let \(x > 0 \). Check graphically the following inequalities:

\[
f(1) < \frac{1}{2} \left(f(1-x) + f(1+x) \right) < \frac{1}{2} \left(f(1-2x) + f(1+2x) \right)
\]

11. (*)Let \(f : \mathbb{R} \rightarrow \mathbb{R} \) concave, and let \(x > 0 \). Check graphically the following inequalities:

\[
f(1) > \frac{1}{2} \left(f(1-x) + f(1+x) \right) > \frac{1}{2} \left(f(1-2x) + f(1+2x) \right)
\]

12. (*)Let \(f : [0, \infty) \rightarrow \mathbb{R} \), convex, such that \(f'(1) = 0 \).

 a) Find the local extrema of \(f \).
 b) What can be said of the global extrema of \(f \)?
 c) Consider now \(f : [0, n] \rightarrow \mathbb{R} \). What can be said of the global extrema of \(f \) ?

13. (*)Let \(f : [0, \infty) \rightarrow \mathbb{R} \), concave, such that \(f'(1) = 0 \).

 a) Find the local extrema of \(f \).
 b) What can be said of the global extrema of \(f \)?
 c) Consider now \(f : [0, n] \rightarrow \mathbb{R} \). What can be said of the global extrema of \(f \) ?

14. Study and graph the following functions:
 a) \(f(x) = x + \cos x \)
 b) \(f(x) = \frac{e^{2x}}{e^x - 1} \)
 c) \(f(x) = \frac{x}{\ln x} \)
 d) \(f(x) = \sqrt{|x - 4|} \)

15. (*)Given the cost function \(C(x) = 4000 + 10x + 0.02x^2 \) and the demand function \(p(x) = 100 - (x/100) \), find the price \(p \) per unit that gives the maximum benefit.

16. (*)Let \(p(x) = x^2 - x + 1/3 \) be the sale price of 1 kilo of plutonium when \(x \) units are sold. Taking into account that the firm sells in the market a maximum of 2 kilos, find the value of \(x \) that maximizes the profits of the firm. We can assume that the Government pays all the costs of the firm.

17. (*)Let \(p(x) = 100 - x^2/2 \) be the demand function of a product and \(C(x) = 48 + 4x + 3x^2 \) its cost function. What is the production \(x \) that minimizes the average cost? And if there exists a maximum production \(x^* \)?

18. A firm that has a cost function \(c(x) = x^2 + 1 \) faces a demand given by the function \(p(x) = \begin{cases} 10 & \text{if } 0 \leq x \leq 1 \\ 1 & \text{if } 1 < x \leq 10 \end{cases} \). Find the production that gives the maximum profit.

19. (*)A manufacturer sells 5000 units per month for 100 euros per unit and he believes that his sales would increase by 500 units for each 5 euros of decrease on the unitary price.

 a) Find the demand, revenues and marginal revenues functions.
 b) If the cost of production of \(x \) units is \(C(x) = 1000 + 0.12x \), find the marginal profit function.