Chapter 5
 Static Games with asymmetric information

December 18, 2019

1 The Bayesian equilibrium

Definition 1.1. A Bayesian game G consists of the following,

$$
G=\left(N, A, T,\left\{p_{i}\right\}_{i=1}^{n},\left\{u_{i}\right\}_{i=1}^{n}\right)
$$

where we have

- The set of players $N=\{1,2, \ldots, n\}$.
- The space of actions $A_{1}, A_{2}, \ldots, A_{n}$ of each player. $A=A_{1} \times A_{2} \times \cdots \times A_{n}, a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$
- The set of possible types $T_{1}, T_{2}, \ldots, T_{n}$ for each player. The type $t_{i} \in T_{i}$ is known only by player $i=1,2, \ldots, n$.
- The set of all the types is $T=T_{1} \times T_{2} \times \cdots \times T_{n}$. We use the notation $t=\left(t_{1}, t_{2}, \ldots, t_{n}\right)$, $t_{-i}=\left(t_{1}, t_{2}, \ldots, t_{i-1}, t_{i+1}, \ldots t_{n}\right)$.
- Each player i has a conjecure $p_{i}: T_{i} \rightarrow \Delta\left(T_{-i}\right)$ about the types of the other players. It may depend on its own type

$$
p_{i}=p_{i}\left(t_{-i} \mid t_{i}\right)
$$

and it is interpreted as the information that agent i has on the types of the other agents $\left(t_{-i}\right)$, given that his type is t_{i}.

- The conjectures of the agents have to be consistent and compatible with Bayes rule: There is a distribution of probabilities $q \in \Delta(T)$ such that

$$
p_{i}\left(t_{-i} \mid t_{i}\right)=\frac{q\left(t_{1} \ldots, t_{n}\right)}{\sum_{s_{-i} \in T_{-i}} q\left(t_{i}, s_{-i}\right)}
$$

We interpret $q\left(t_{1}, \ldots, t_{n}\right)$ as the probability that agent 1 is of type t_{1}, agent 2 is of type t_{2}, \ldots and agent n is of type t_{n}. The denominator $\sum_{s_{-i} \in T_{-i}} q\left(t_{i}, s_{-i}\right)$ is the probability that the agent of type i be t_{i}. That is, $p_{i}\left(t_{-i} \mid t_{i}\right)$ is, according to Bayes rule, the probability that the other agents have the type t_{-i}, given that the type of agent i is t_{i}.

- A pure strategy of player i,

$$
s_{i}: T_{i} \rightarrow A_{i}
$$

specifies the action of each of player for each of his possible types i.

- A mixed strategy of player i,

$$
\sigma_{i}: T_{i} \rightarrow \Delta\left(A_{i}\right)
$$

is a vector $\sigma_{i}\left(t_{i}\right)=\left(\sigma_{i}\left(a_{1}, t_{i}\right), \ldots, \sigma_{i}\left(a_{n}, t_{i}\right)\right)$. Here, $\sigma_{i}\left(a_{k}, t_{i}\right)$ is the probability that agent i of type t_{i} plays the strategy a_{k}.

- The funcions of utility over outcomes: of the agents $u_{1}, u_{2}, \ldots, u_{n}$ are of the form

$$
u_{i}: A \times T \rightarrow \mathbb{R}
$$

$u_{i}(a ; t)$ depends on the types $t=\left(t_{1}, \ldots, t_{n}\right)$ and on the actions of all the agents $a=\left(a_{1}, \ldots, a_{n}\right)$.

- Utility functions over strategies: The expected utility of agent i when he plays strategy a_{i}, given that the other agents are playing the pure strategies s_{k} is

$$
\begin{gathered}
U_{i}\left(s_{1}, \ldots, s_{t_{i}-1}, a_{i}, s_{t_{i}+1}, \ldots s_{n}\right)= \\
\sum_{t_{-i} \in T_{-i}} u_{i}\left(s_{1}\left(t_{1}\right), \ldots, s_{t_{i-1}}\left(t_{i-1}\right), a_{i}, s_{t_{i+1}}\left(t_{i+1}\right), \ldots s_{n}\left(t_{n}\right) ; t\right) p_{i}\left(t_{-i} \mid t_{i}\right)
\end{gathered}
$$

- The notion of equilibrium is the NE with the above expected utility functions.

2 Cournot competition with asymmetric information

Cournot Duopoly

- Suppose there are two companies which compete in quantities (Cournot's competion).
- The inverse demand is

$$
P(q)=a-q
$$

where

$$
q=q_{1}+q_{2}
$$

and q_{1}, q_{2} are the amounts produced by the companies.

- The cost function of Firm 1 is

$$
c_{1}\left(q_{1}\right)=c q_{1}
$$

- The cost function of Firm 2 is

$$
c_{2}\left(q_{2}\right)= \begin{cases}c_{a} q_{2} & \text { with probability } \theta \\ c_{b} q_{2} & \text { with probability } 1-\theta\end{cases}
$$

with $c_{b}<c_{a}$.

- There is asymmetric information:
- Firm 2 knows its cost cost function (c_{a} or c_{b}) and knows the cost of Firm 1.
- But, Firm 1 only knows its cost function. It also knows that the marginal cost of Firm 2 is c_{a} with probability θ and c_{b} with probability $1-\theta$.
- Firm 2 has more information than Firm 1.
- First we represent this situation as a Bayesian Game.
- The players are $N=\{1,2\}$.
- The types are the cost functions of the companies $T_{1}=\{c\} \quad T_{2}=\left\{c_{a}, c_{b}\right\}$.
- The utility functions are the profits,

$$
\begin{aligned}
\pi_{1}\left(q_{1}, q_{2}, c\right) & =\left(a-q_{1}-q_{2}\right) q_{1}-c q_{1}=\left(a-q_{1}-q_{2}-c\right) q_{1} \\
\pi_{2}\left(q_{1}, q_{a}, c_{a}\right) & =\left(a-q_{1}-q_{a}\right) q_{a}-c_{a} q_{a}=\left(a-q_{1}-q_{2}-c_{a}\right) q_{a} \\
\pi_{2}\left(q_{1}, q_{b}, c_{b}\right) & =\left(a-q_{1}-q_{b}\right) q_{b}-c_{b} q_{b}=\left(a-q_{1}-q_{2}-c_{b}\right) q_{b}
\end{aligned}
$$

- The sets of actions are $A_{c}=A_{a}=A_{b}=[0, \infty)$.
- The conjectures of the firms are

$$
p_{2}\left(t_{1}=c \mid c_{a}\right)=p_{2}\left(t_{1}=c \mid c_{b}\right)=1
$$

and

$$
p_{1}\left(t_{2}=c_{a} \mid c\right)=\theta, \quad p_{1}\left(t_{2}=c_{b} \mid c\right)=1-\theta
$$

Best response of Firm 2

- If the cost function of Firm 2 is c_{a} then it solves the following problem

$$
\max _{q_{a}}\left(a-q_{1}-q_{a}\right) q_{a}-c_{a} q_{a}=\max _{q_{2}}\left(a-q_{1}-q_{a}-c_{a}\right) q_{a}
$$

- The FOC's are $a-q_{1}-2 q_{a}-c_{a}=0$ so the best response for Firm 2 provided its cost is c_{a} and that Firm 1 produces q_{1} is

$$
q_{a}=q_{2}\left(c_{a}\right)=\frac{a-q_{1}-c_{a}}{2}
$$

- If the cost function of Firm 2 is c_{b} then it solves the following problem

$$
q_{b}=\max _{q_{2}}\left(a-q_{1}-q_{b}\right) q_{b}-c_{b} q_{b}=\max _{q_{2}}\left(a-q_{1}-q_{b}-c_{b}\right) q_{b}
$$

- The FOC's for the firm are $a-q_{1}-2 q_{b}-c_{b}=0$ so the best response for Firm 2 if its cost is c_{b} and firm 1 produces q_{1} is

$$
q_{b}=q_{2}\left(c_{b}\right)=\frac{a-q_{1}-c_{b}}{2}
$$

Best response of Firm 1

- Firm 1 does not know the cost function of Firm 2. It maximizes expected profit (EP)

$$
\max _{q_{1}} \theta \underbrace{\left(a-q_{1}-q_{2}\left(c_{a}\right)-c\right) q_{1}}_{\text {EP if firm 2's cost is } c_{a}}+(1-\theta) \underbrace{\left(a-q_{1}-q_{2}\left(c_{b}\right)-c\right) q_{1}}_{\text {EP if firm 2's cost is } c_{b}}
$$

- The FOC is

$$
\theta\left(a-2 q_{1}-q_{2}\left(c_{a}\right)-c\right)+(1-\theta)\left(a-2 q_{1}-q_{2}\left(c_{b}\right)-c\right)=0
$$

- We obtain the reaction function of Firm 1

$$
q_{1}=\frac{\theta\left(a-q_{2}\left(c_{a}\right)-c\right)+(1-\theta)\left(a-q_{2}\left(c_{b}\right)-c\right)}{2}
$$

- The NE satisfies the equations

$$
\begin{aligned}
q_{1} & =\frac{\theta\left(a-q_{2}\left(c_{a}\right)-c\right)+(1-\theta)\left(a-q_{2}\left(c_{b}\right)-c\right)}{2} \\
q_{2}\left(c_{a}\right) & =\frac{a-q_{1}-c_{a}}{2} \\
q_{2}\left(c_{b}\right) & =\frac{a-q_{1}-c_{b}}{2}
\end{aligned}
$$

Solving for $q_{2}\left(c_{a}\right)$ and $q_{2}\left(c_{b}\right)$ in the first equation, we obtain

$$
2 q_{1}=\theta\left(a-\frac{a-q_{1}-c_{a}}{2}-c\right)+(1-\theta)\left(a-\frac{a-q_{1}-c_{b}}{2}-c\right)
$$

- and from here we see that

$$
q_{1}=\frac{a-2 c+\theta c_{a}+(1-\theta) c_{b}}{3}
$$

- Substituting this value we obtain that

$$
\begin{aligned}
q_{1}^{*} & =\frac{a-2 c+\theta c_{a}+(1-\theta) c_{b}}{3} \\
q_{2}^{*}\left(c_{a}\right) & =\frac{a-2 c_{a}+c}{3}+\frac{1-\theta}{6}\left(c_{a}-c_{b}\right) \\
q_{2}^{*}\left(c_{b}\right) & =\frac{a-2 c_{b}+c}{3}-\frac{\theta}{6}\left(c_{a}-c_{b}\right)
\end{aligned}
$$

Comparison with the Cournot equilibrium with complete information

- With complete information and cost functions c_{1}, c_{2} Cournot's equilibrium is

$$
\bar{q}_{1}=\frac{a-2 c_{1}+c_{2}}{3} \quad \bar{q}_{2}=\frac{a-2 c_{2}+c_{1}}{3}
$$

- We observe that the case with complete information can be obtained from the incomplete information case by setting $c_{2}=c_{a}=c_{b}$.
- Let us call

$$
\bar{q}_{1}\left(c_{a}\right)=\frac{a-2 c_{1}+c_{a}}{3}
$$

the production of Firm 1 if it knows that the cost function of Firm 2 is c_{a}.

- and

$$
\bar{q}_{1}\left(c_{b}\right)=\frac{a-2 c_{1}+c_{b}}{3}
$$

the production of Firm 1 if it knows that the cost function of Firm 2 es c_{b}.

- Then,

$$
\bar{q}_{1}\left(c_{a}\right) \geq q_{1}^{*} \geq \bar{q}_{1}\left(c_{b}\right)
$$

- Note that

$$
\begin{aligned}
& q_{2}^{*}\left(c_{a}\right)>\frac{a-2 c_{a}+c_{1}}{3} \\
& q_{2}^{*}\left(c_{b}\right)<\frac{a-2 c_{b}+c_{1}}{3}
\end{aligned}
$$

- This happens because Firm 2 adjusts its production not only to its own cost, but it also takes into account that Firm 1 doesn't know the cost function of Firm 2 and adopts a production in between those that would adopt if it knew that the cost of Firm 2 is either a or b.

3 Sealed bid auctions

- Two agents, $i=1,2$, participate in an auction. The agents bid simultaneously. The highest bidder wins: gets the object and pays his bid. In case of a tie, the winner is determined by a fair lottery.
- Private value auctions: Each bidder i knows only his valuation of the object, $v_{i} \in[0,1]$, but the valuation v_{j} of the other bidder. He only knows the distribution function of v_{j}. Let us assume that the valuations of the bidders are independent and uniformly distributed on the interval $[0,1]$. That is,

$$
\operatorname{prob}\left(v_{j} \leq x\right)=x
$$

- Agents are risk neutral: If his valuation is v, wins the object and pays p, his payoff is $v-p$.
- We write this mechanism as a Baysian Game and find the equilibria.

1. The types of the agents are $T_{1}=T_{2}=[0,1]$.
2. The probability of each type is described by $\operatorname{prob}\left(v_{j} \leq x\right)=x$. Theses are the conjectures of the agents.
3. The sets of actions are $A_{1}=A_{2}=[0,1]$. We denote de action of agent $i=1,2$ by $b_{i} \in A_{i}$.

Utility functions

- The utility function of agent $i=1,2$, given that
- his valuation is v_{i},
- he bids b_{i}, and
- the other agent bids b_{j}
is

$$
u_{i}\left(b_{i}, b_{j} \mid v_{i}\right)= \begin{cases}v_{i}-b_{i}, & \text { if } b_{i}>b_{j} \\ 0, & \text { if } b_{i}<b_{j} \\ \left(v_{i}-b_{i}\right) / 2 & \text { if } b_{i}=b_{j}\end{cases}
$$

- A strategy for agent i is a function $b_{i}\left(v_{i}\right)$ from T_{i} into A_{i}.
- Given that $j=1,2$ uses the strategy $b_{j}\left(v_{j}\right)$, the best reply of agent i is the solution of the following maximization problem

$$
\max _{b_{i}} \quad\left(v_{i}-b_{i}\right) \operatorname{prob}\left(b_{i}>b_{j}\left(v_{j}\right)\right)+\frac{1}{2}\left(v_{i}-b_{i}\right) \operatorname{prob}\left(b_{i}=b_{j}\left(v_{j}\right)\right)
$$

Since, $\operatorname{prob}\left(b_{i}=b_{j}\left(v_{j}\right)\right)=0$ the above problem is equivalent to the following one

$$
\max _{b_{i}}\left(v_{i}-b_{i}\right) \operatorname{prob}\left(b_{i}>b_{j}\left(v_{j}\right)\right)
$$

- Ww show now that there is an equilibrium that is symmetric and linear. That is,

$$
b_{i}(v)=b_{j}(v)=A v
$$

- and we have to determine the value of A.
- The maximization problem becomes

$$
\begin{aligned}
\max _{b_{i}}\left(v_{i}-b_{i}\right) \operatorname{prob}\left(b_{i}>b_{j}\left(v_{j}\right)\right) & =\max _{b_{i}}\left(v_{i}-b_{i}\right) \operatorname{prob}\left(b_{i}>A v_{j}\right)= \\
=\max _{b_{i}}\left(v_{i}-b_{i}\right) \operatorname{prob}\left(v_{j}<\frac{b_{i}}{A}\right) & =\max _{b_{i}}\left(v_{i}-b_{i}\right) \frac{b_{i}}{A}
\end{aligned}
$$

- The FOC is

$$
v_{i}-2 b_{i}=0
$$

- And we see that

$$
b_{i}=\frac{v_{i}}{2}
$$

is a symmetric BE.

4 Public Goods

- Two neighbors live in an island with no highways. The government plans to build one at the cost of 20 million. The monetary value of the road for a user is the following.
- 30 million if the user has a car
- 0 , if the user does not have a car.
- the probability that a neighbor owns a car is

$$
p(\text { car })=p
$$

- This information is public and known by the agents.
- To take a decision wether to build the road or not to build the road the government considers the two following possible procedures.

4.1 Mechanism A

Mechanism A

- Each neighbor fills up a questionnaire stating wether he has a car or not.
- It is understood that a neighbor that claims to have a car is willing to contribute up to 30 million towards the construction of the road.
- If the number of neighbors that claim to have a car is enough to cover the cost of the road, then the road tis build and the cost it is divided evenly among all those neighbors.
- If the number of neighbors that claim to have a car is NOT enough to cover the cost of the road, then the road is build.
- Let us describe this mechanism as a Bayesian game and compute the equilibria.
- The types of agents are $T_{1}=T_{2}=\{$ car, no car $\}$. But it will be more convenient to use the value that the each type of user assigns to building the road $T_{1}=T_{2}=\{0,30\}$.
- The probability of each type is $p(0)=1-p, p(30)=p$. These are the conjectures of the agents

$$
p_{i}\left(t_{j}=30 \mid t_{i}\right)=p
$$

- The set of actions of the agents is $A_{1}=A_{2}=\{\mathrm{yes}, \mathrm{no}\}$.
- Let us denote the action of agent $i=1,2$ by a_{i}. The strategy of agent $i=1,2$ is a function $T \rightarrow A_{i}$.

Utility functions

- The utility function of agent $i=1,2$ is (it is understood that $i \neq j$)

$$
u_{i}\left(a_{1}, a_{2} \mid t_{i}\right)= \begin{cases}t_{i}-20, & \text { if } a_{i}=\text { yes y } a_{j}=\text { no } \\ t_{i}, & \text { if } a_{i}=\text { no y } a_{j}=\text { yes } ; \\ t_{i}-10, & \text { if } a_{i}=a_{j}=\text { yes; } \\ 0, & \text { if } a_{i}=a_{j}=\text { no }\end{cases}
$$

- Note that

$$
u_{i}\left(a_{1}, a_{2} \mid t_{i}=0\right)= \begin{cases}-20, & \text { if } a_{i}=\text { yes y } a_{j}=\mathrm{no} \\ 0, & \text { if } a_{i}=\text { no y } a_{j}=\text { yes } \\ -10, & \text { if } a_{i}=a_{j}=\text { yes } \\ 0, & \text { if } a_{i}=a_{j}=\text { no }\end{cases}
$$

That is, the action

$$
a_{i}(0)=\text { no }
$$

is a dominant strategy.

Complete information

- Suppose that $t_{1}=30$ y $t_{2}=0$. The game is

	yes	no
yes	$20,-10$	10,0
no	$30,-20$	0,0

The unique NE is (yes, no).

- Suppose that $t_{1}=t_{2}=30$. The game is

	yes	no
yes	20,20	10,30
no	30,10	0,0

- There are three NE
- (yes, no), (no, yes) and
- a NE in mixed strategies

$$
\left(\frac{1}{2} \text { yes }+\frac{1}{2} \text { no, } \frac{1}{2} \text { yes }+\frac{1}{2} \text { no }\right)
$$

Incomplete information

- Let us search for a symmetric equilibrium in pure strategies.
- Symmetric equilibrium means that $a_{1}(t)=a_{2}(t)$ for every $t \in T$.
- In equilibrium, $a_{1}(0)=a_{2}(0)=$ no.
- Is $a_{1}(30)=a_{2}(30)=$ yes an equilibrium?
- Suppose that $t_{i}=30$. (the agent i has a car)
- The expected payoff of this agent with the above strategy is

$$
\begin{aligned}
p u_{i}\left(\text { yes, } a_{j}(30) \mid 30\right) & +(1-p) u_{i}\left(\text { yes }, a_{j}(0) \mid 30\right)= \\
p u_{i}(\text { yes, yes } \mid 30) & +(1-p) u_{i}(\text { yes, no } \mid 30)= \\
p(30-10) & +(1-p)(30-20)=10 p+10
\end{aligned}
$$

Symmetric equilibrium in pure strategies

- On the other hand, if he deviates and follows the strategy $b_{i}=$ no, his expected payoff is

$$
\begin{aligned}
p u_{i}\left(\text { no, } a_{i}(30) \mid 30\right) & +(1-p) u_{i}\left(\text { no }, a_{i}(0) \mid 30\right)= \\
p u_{i}(\text { no, yes } \mid 30) & +(1-p) u_{i}(\text { no }, \text { no } \mid 30)= \\
p(30-0) & +(1-p) \times 0=30 p
\end{aligned}
$$

- Therefore, the strategy

$$
a_{1}(30)=a_{2}(30)=\text { yes }
$$

is a BE if $10+10 p \geq 30 p$, that is if $p \leq 1 / 2$.

- Summary: if $p \leq 1 / 2$ there is a symmetric BE in pure strategies

$$
\begin{aligned}
a_{1}(0) & =a_{2}(0)=\mathrm{no} \\
a_{1}(30) & =a_{2}(30)=\mathrm{yes}
\end{aligned}
$$

- This equilibrium is efficient: The road is build whenever $t_{1}+t_{2}>20$.

Is there any other symmetric equilibrium in pure strategies?

- Is $a_{i}(30)=a_{i}(0)=$ no $i=1,2$ a BE?
- The expected payoff with this strategy is 0 .
- Whereas if an agent deviates, his expected payoff is 10 .
- Therefore, $a_{i}(30)=a_{i}(0)=$ no $i=1,2$ is not a BE.

Incomplete information. Symmetric equilibrium in mixed strategies

- Now we ask if there exists a symmetric BE in mixed strategies when $p>1 / 2$.
- The symmetric equilibrium in mixed strategies must be of the form

$$
a_{1}(30)=a_{2}(30)=w \text { yes }+(1-w) \text { no }=
$$

- Suppose that the agent i is of type $t_{i}=30$. Recall that a necessary condition for the above strategy to be NE in mixed strategies is that the agent be indifferent among $a_{i}(30)=$ yes and $a_{i}(30)=$ no. Let us express this condition.
- When the agent declares $a_{i}(30)=$ yes and the other agent $j \neq i$ follows the mixed strategy $a_{j}(30)=$ $(w, 1-w)$ then the expected payoff for agent i is

$$
\begin{aligned}
p\left[w u_{i}(\text { yes, yes } \mid 30)+\right. & \left.(1-w) u_{i}(\text { yes }, \mathrm{no} \mid 30)\right] \\
+ & (1-p) u_{i}(\text { yes }, \mathrm{no} \mid 30)= \\
p[w(30-10)+ & (1-w)(30-20)]+(1-p)(30-20)= \\
& =10+10 p w
\end{aligned}
$$

- If the agent declares $a_{i}(30)=$ no and the other agent $j \neq i$ follows the mixed strategy $a_{j}(30)=$ $(w, 1-w)$ then the expected payoff for agent i is

$$
\begin{aligned}
p\left[w u_{i}(\mathrm{no}, \text { yes } \mid 30)+\right. & \left.(1-w) u_{i}(\mathrm{no}, \mathrm{no} \mid 30)\right] \\
+ & (1-p) u_{i}(\mathrm{no}, \mathrm{no} \mid 30)= \\
p[w \cdot 30+ & (1-w) \cdot 0]+(1-p) \cdot 0= \\
& =30 p w
\end{aligned}
$$

- Therefore, the strategy $a_{1}(30)=a_{2}(30)=w$ yes $+(1-w)$ no is a BE if

$$
10+10 p w=30 p w
$$

that is, if

$$
w=\frac{1}{2 p} \quad \frac{1}{2} \leq p \leq 1
$$

- Hence, we have found that

1. If $p \leq 1 / 2$ then

$$
a_{i}(0)=\mathrm{no}, \quad a_{i}(30)=\mathrm{yes}
$$

is a BE .
2. If $p>1 / 2$ then

$$
a_{i}(0)=\text { no, } \quad a_{i}(30)=\frac{1}{2 p} \text { yes }+\left(1-\frac{1}{2 p}\right) \text { no }
$$

is a BE .

Efficiency

- What is the probability that it is efficient to build the road?
- There are four possible cases,

	$(30,30)$	$(30,0)$	$(0,30)$	$(0,0)$
Efficient	yes	yes	yes	no
prob	p^{2}	$p(1-p)$	$p(1-p)$	$(1-p)^{2}$

- The probability that building the road is efficient is

$$
p^{2}+2 p(1-p)=2 p-p^{2}
$$

- What is the probability that the road is built if mechanism A is adopted?
- if $p \leq 1 / 2$,

	$(30,30)$	$(30,0)$	$(0,30)$	$(0,0)$
prob	p^{2}	$p(1-p)$	$p(1-p)$	$(1-p)^{2}$
prob. of building	1	1	1	0

- The probability of building the road is

$$
p^{2}+2 p(1-p)=2 p-p^{2} \leq \frac{1}{2}
$$

- The probability of building the road coincides with the probability that it is efficient to build it.
- But, if $p>1 / 2$,

	$(30,30)$	$(30,0)$	$(0,30)$	$(0,0)$
prob	p^{2}	$p(1-p)$	$p(1-p)$	$(1-p)^{2}$
prob. of building	$1-(1-w)^{2}$ $=2 w-w^{2}$	w	w	0

- The probability of building the road is

$$
p^{2}\left(2 w-w^{2}\right)+2 p(1-p) w=\frac{3}{4}
$$

- The mechanism is inefficient with probability

$$
p^{2}(1-w)^{2}+2 p(1-p)(1-w)=2 p-p^{2}-\frac{3}{4}
$$

- The graph of the function $2 p-p^{2}$ is

- We see that if $1 / 2<p \leq 1$, then

$$
2 p-p^{2}>\frac{3}{4}
$$

- The probability of building the road is lower than the probability that it is efficient to build it.

4.2 Mechanism B

Mechanism B

- We order the agents $i=1,2$. agent 1 indicates how much he is willing to pay in order to build the road: $\xi_{1} \in[0,20]$.
- Agent 2 knowing ξ_{1} informs of his decision

1. 'yes': then the road is build and agents pay the amounts ξ_{1} and $\xi_{2}=20-\xi_{1}$.
2. 'no': then the road is not build and agents pay the amounts $\xi_{1}=0$ and $\xi_{2}=0$.

- Let us write this mechanism as Bayesian game and compute the equilibria.
- the types of the agents are $T=T_{1}=T_{2}=\{$ car, no car $\}$. As a type we continue to use the value that each assigns to building the road $T=T_{1}=T_{2}=\{0,30\}$.
- the probability of each type is $p(0)=1-p, p(30)=p$. These are the conjectures of the agents

$$
p_{i}\left(t_{j}=30\right)=p
$$

- the sets of actions of the agents are $A_{1}=[0,20], A_{2}=\{y e s, n o\}$.
- We denote the action of agent $i=1,2$ by a_{i}. The strategy of agent 1 is a function $a_{1}: T_{1} \rightarrow A_{1}$. The strategy of agent 2 is a function $a_{2}: T_{2} \times A_{1} \rightarrow A_{2}$.

Utility functions

- the utility function of agent 1 is

$$
u_{1}\left(a_{1}, a_{2}, t_{1}\right)= \begin{cases}t_{1}-a_{1}, & \text { if } a_{2}=\text { yes } \\ 0, & \text { if } a_{2}=\text { no }\end{cases}
$$

- the utility function of agent 2 is

$$
u_{2}\left(a_{1}, a_{2} \mid t_{1}\right)= \begin{cases}t_{2}-\left(20-a_{1}\right), & \text { if } a_{2}=\text { yes } \\ 0, & \text { if } a_{2}=\text { no }\end{cases}
$$

Second stage

- Let us compute the BE. Since, it is a sequential game, we solve it by backwards induction. First, we analyze the actions of player 2.
- if player 1 chooses the action a_{1}, the payoffs of player 2 are

1. $u_{2}=t_{2}-\left(20-a_{1}\right)=t_{2}-20+a_{1}$, when $a_{2}=$ yes.
2. $u_{2}=0$, when $a_{2}=$ no.

- the best reply of player 1 is

$$
a_{2}\left(30, a_{1}\right)=\text { yes, } \quad a_{2}\left(0, a_{1}\right)= \begin{cases}\text { no } & \text { if } a_{1}<20 \\ \text { yes, } & \text { if } a_{1}=20\end{cases}
$$

First stage

- player 1 anticipates the reaction of player 2 .
- if the type of player 1 is $t_{1}=0$, his best strategy is to choose $a_{1}(0)=0$.
- Suppose now that the type of player 2 is $t_{1}=30$ and let us find his optimal strategy.
- if his message is $a_{1}=20$, then his expected utility is 10 .
- if his message is $a_{1}<20$, then his expected utility is

$$
p\left(30-a_{1}\right)+(1-p) \cdot 0=30 p-p a_{1}
$$

- that is, among all the messages $a_{1}<20$ his optimal strategy is to choose $a_{1}=0$. And his expected utility is $30 p$.
- Player 1 decides wether his message is $a_{1}=20$ or $a_{1}=0$.
- he chooses $a_{1}=0$ if $30 p>10$. or if

$$
p>\frac{1}{3}
$$

- Hence,

$$
a_{1}(0)=0 \quad a_{1}(30)= \begin{cases}0, & \text { if } p>1 / 3 \\ 20, & \text { if } p<1 / 3 \\ {[0,20],} & \text { if } p=1 / 3\end{cases}
$$

Equilibrium

- In brief, the BE is

$$
\begin{gathered}
a_{1}(0)=0 \quad a_{1}(30)= \begin{cases}0, & \text { if } p>1 / 3 \\
20, & \text { if } p<1 / 3 \\
{[0,20],} & \text { if } p=1 / 3\end{cases} \\
a_{2}\left(30, a_{1}\right)=\text { yes, } \quad a_{2}\left(0, a_{1}\right)= \begin{cases}\text { no } & \text { if } a_{1}<20 \\
\text { yes, } & \text { if } a_{1}=20\end{cases}
\end{gathered}
$$

Efficiency

- What is the probability that the road is build if mechanism B is the one adopted?

	$(30,30)$	$(30,0)$	$(0,30)$	$(0,0)$
Efficient	yes	yes	yes	no
prob	p^{2}	$p(1-p)$	$p(1-p)$	$(1-p)^{2}$
road is build	yes	yes when $p<1 / 3$ no when $p>1 / 3$	yes	no

- The probability that building the road is efficient is $p^{2}+2 p(1-p)=2 p-p^{2}$.
- The probability of building the road is

$$
\begin{aligned}
p^{2}+2 p(1-p)=2 p-p^{2} & \text { if } p<1 / 3 \\
p^{2}+p(1-p)=p & \text { if } p>1 / 3
\end{aligned}
$$

- If $p>1 / 3$, the mechanism is inefficient with probability $p(1-p)=p-p^{2}$.
- Which of the two mechanisms is more efficient?
- Mechanism A is more inefficient than B if

$$
2 p-p^{2}-\frac{3}{4}>p-p^{2}
$$

that is, if

$$
p>\frac{3}{4}
$$

5 More information could be worse

- Consider the following game with incomplete information,

- The agents believe that with probability $1 / 2$ they play the game w_{1} and with probability $1 / 2$ they play the game w_{2}.
- The unique NE is (B, L). Each player gets an expected payoff of 2 .
- Suppse now that player 2 knows if the true game played is w_{1} or w_{2}. In this case,the unique NE is (T, R) ó (T, M). The payoff of player 2 is $3 / 4$. He would have preferred not to be informed.
- But, can player 2 credibly commit to ignore the information he has received?

