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1 Normal Form Games

A normal form Game G consists of three elements G = (I, S, u); where

1. I = {1, 2, . . . , n} is the set of decision makers, the players.

2. S = S1,×S2 × · · · × Sn describes the feasible actions of the players (their strategies). The players
choose a strategy s = (s1, s2, . . . , sn) ∈ S simultaneously. An outcome is obtained.

3. u = (u1, u2, . . . , un) describes the satisfaction (the payoffs) of the players with the outcomes. For
each i = 1, 2, . . . , n, ui : S → R.

Observation 1.1. In the course, almost all the time I = 2.

Example 1.2 (Prisoners’ Dilemma). Two suspects are arrested by the police and kept in separated cells.
They cannot communicate with each other. The police have enough evidence to convince both of them
of crime A. However, the police ‘know’ that they have committed a much more serious crime, crime B.
Unfortunately, the police lack the evidence to convict them of crime B. The police interrogate each of
them separately and offers the possibility of confessing (C) crime B and implicating the other partner.
Thus, each of the suspects has to decide wether to confess crime B and implicate his partner or remain
silent (N). If one of them confesses and the other does not, then the one that has confessed goes free
and his partner is sentenced to 6 years in prison. If both of them confess, they are sentenced to 5 years
in prison each (the judge takes into account that they have collaborated). If both of them remain silent,
the police use the evidence they have to convict them for crime A and they are both sentenced to 1 year
in prison each.

Why does this fit into the framework of a normal form game? Because,

1. The players are the suspects. I = {1, 2}.

2. Their feasible actions are to confess (C) or remain silent (N). Thus, S1 = S2 = {C,N} describe
their strategies.

3. The payoffs may be represented by

u1(C,C) = −5
u1(C,N) = 0
u1(N,C) = −6
u1(N,N) = −1

u2(C,C) = −5
u2(C,N) = −6
u2(N,C) = 0
u2(N,N) = −1

The above is a bit cumbersome. From now we will use the following notation.

Suspect 1

Suspect 2
N C

N -1,−1 −6, 0
C 0,−6 −5,−5

The prisoner’s dilemma
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What do you think it will happen?

Example 1.3 (Advertising). Two firms operate in a market. Presently, each one of them earns $50
million from its customers. Now both have to decide wether to advertise (A) their product or not (N).
Advertising costs each firm $20 million. If one firm advertises and the other does not, the former captures
$30 million from the latter. If both firms advertise, they both earn $50 million.

The above situation can be described as a normal form game with

1. The players are the firms. I = {1, 2}.

2. Their feasible actions are to advertise (A) or not to advertise (N). Thus S1 = S2 = {A,N} describe
their strategies.

3. The payoffs (profits) may be represented by

Firm 1

Firm 2
N A

N 50, 50 20, 60
A 60, 20 30, 30

Advertising

Shi Qi: ‘The impact of Advertising Regulation on Industry. The cigarrette Advertising Ban of 1971’,
Rand Journal (2013).

Example 1.4 (Tourists and Natives). Two bars compete for customers. They can charge prices $2, $4
or $5 for coffee. 6000 tourists choose a bar randomly. 4000 natives choose the bar with the lowest price.

We write this as a normal form game.

1. The players are bar 1 and bar 2. I = {1, 2}.

2. Their feasible actions are the prices). Thus the strategies are S1 = S2 = {2, 4, 5}.

3. The payoffs (profits) may be represented by

Bar 1

Bar 2
2 4 5

2 10, 10 14, 12 14, 15
4 12, 14 20, 20 28, 15
5 15, 14 15, 28 25, 25

Tourists and Natives

2 Equilibrium

What does Game Theory predict in each of the above situations? (Standard) Game Theory makes the
following assumptions.

• Rationality.

1. Players maximize their payoffs.

2. Players can make all the necessary inferences and computations.

• Common knowledge.

1. Every player knows the rules of the game.

2. Every player knows that every other player knows (??).
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3. Every player knows that every other player knows (??).

4. Etc.

Some notation: Fix a player i = 1, 2, . . . , n. We write the strategies by

s = (s1, s2, . . . , sn) = (si, s−i)

where
s−i = (s1, . . . , si−1, si+1, . . . sn)

2.1 Dominant strategies and Dominance Solvability.

Definition 2.1. Let a game G = (I, S, u). Fix a player i = 1, 2, . . . , n and consider two actions s̄i, ¯̄si ∈ Si

for that player. We say that

• action s̄i weakly dominates action ¯̄si (or that action ¯̄si is weakly dominated by action s̄i) for
player i if

ui(s̄i, s−i) ≥ ui(¯̄si, s−i), for every s−i ∈ S−i

and
ui(s̄i, s−i) > ui(¯̄si, s−i), for some s−i ∈ S−i.

• item action s̄i strictly dominates action ¯̄si (or that action ¯̄si is strictly by action s̄i) for player
i if

ui(s̄i, s−i) > ui(¯̄si, s−i), for every s−i ∈ S−i.

Definition 2.2. Let a normal form game G = (I, S, u). Fix a player i = 1, 2, . . . , n. An action si ∈ Si is

• weakly dominant if weakly dominates every other action in Si.

• strictly dominant if strictly dominates every other action in Si.

Examples.

Iterated Elimination of Strictly Dominated Strategies (IESD):

Start with a normal form game G0.

• Choose a player and remove all the strictly dominated strategies for that player. We obtain a new
game G1.

• Consider now the game G1. Choose a player and remove all the strictly dominated strategies for
that player. We obtain a new game G2.

• Repeat the process until there are no strictly dominated strategies in the remaining game, say Gn.

The remaining strategies in the game Gn are called the rationalizable strategies.

Definition 2.3. A normal form game is dominance solvable if the IESD procedure yields a unique
outcome.

Example 2.4 (Stug Hunt Game). Two firms operate in a market. Presently, each one of them earns
$45 million from its customers. Now both have to decide wether to invest (I) all the money in R&D or
not (N). However, R&D is successful only if both firms invest. If R&D is successful the the net profit
for each firm is $50 million.

The above situation can be described as a normal form game with
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1. The players are the firms, I = {1, 2}.

2. Their feasible actions are to invest (I) or not to invest (N). Thus the strategies are S1 = S2 =
{I,N}.

3. The payoffs (profits) may be represented by the following table.

Firm 1

Firm 2
I N

I 50, 50 0, 45
N 45, 0 45, 45

Stug Hunt Game

Every strategy is rationalizable.

2.2 Nash Equilibrium in pure strategies.

Definition 2.5 (Best response for pure strategies). Let a game G = (I, S, u). Fix a player i = 1, 2, . . . , n.
Suppose he knows that all the other players are playing the strategy s−i. We say an action si ∈ Si is a
best response for player i to s−i (and we write si ∈ BRi(s−i) if

ui(si, s−i) ≥ ui(s̄i, s−i), for every other s̄i ∈ Si

Definition 2.6 (pure strategy Nash Equilibrium). Let a game G = (I, S, u). A strategy profile s∗ =
(s∗1, s

∗
2, . . . , s

∗
n) is a (pure strategy) Nash Equilibrium of G if for every player i = 1, 2, . . . , n we have that

s∗i ∈ BRi(s
∗
−i).

Example 2.7 (Chicken Game). Two drivers drive towards each other in a one lane road. Each driver
has to decide wether to swerve (S) or not (N). If none of them changes the direction, they both collide.

Driver 1

Driver 2
S N

S 0, 0 −1, 1
N 1,−1 −100,−100

Chicken Game

Example 2.8 (Matching pennies). Two individuals have a coin each. They simultaneously choose heads
tails and show their coin. If both coins are matched player 1 pays $1 to player 2. Otherwise, player 2
pays $1 to player 1.

Player 1

Player 2
H T

H −1, 1 1,−1
T 1,−1 −1, 1

Matching pennies

No NE in pure strategies.

Some Remarks about NE.

1. A NE is part of the rationalizable strategies.

2. If the IESD procedure yields a unique strategy for each player, then these strategies constitute the
unique NE of the game.
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3. However a NE may include weakly dominated strategies.

Player 1

Player 2
H T

H 0, 0 0, 0
T 0, 0 1, 1

4. The unique NE of a game may not be Pareto Optimal. (Prisoner’s Dilemma).

5. A game may have more than one NE in pure strategies. (Stug Hunt Game).

6. A game may not have any NE in pure strategies. (Matching pennies).

2.3 Nash Equilibrium in mixed strategies.

Definition 2.9 (Mixed Strategies). Let a game G = (I, S, u). Fix a player i = 1, 2, . . . , n. Suppose the
set of strategies Si = {si1, . . . , sik) of agent i has ki elements. A mixed strategy for player i is a probability
distribution σi = (αi

1, . . . , α
i
ki) on Si such that

• αi
1, . . . , α

i
ki ≥ 0.

• αi
1 + . . .+ αi

ki = 1.

Instead of σi = (αi
1, . . . α

i
ki) we will write

σi = αi
1s

i
1 + · · ·+ αi

kisik

We interpret that player i plays the strategy sil with probability αi
l . We denote by ∆i the set of mixed

strategies for player i.

• Examples.

• Notation.

• The payoffs extend to mixed strategies in a linear way. Payoffs are expected payoffs.

That is, Let
(
σ1, . . . , σn

)
a mixed strategy profile. Then

ui(σ) =

k1∑
l1=1

k2∑
l2=1

· · ·
kn∑

ln=1

α1
l1α

2
l2 · · ·α

n
lnui

(
s1l1 , s

2
l2 , . . . , s

n
ln

)
Definition 2.10 (Best response for mixed strategies). Let a game G = (I, S, u). Fix a player i =
1, 2, . . . , n. Suppose he knows that all the other players are playing the mixed strategy σ−i. We say a
mixed strategy σi ∈ ∆i is a best response for player i to σ−i (and we write σi ∈ BRi(σ−i) if

ui(σi, σ−i) ≥ ui(σ̄i, σ−i), for every other mixed (or pure) strategy σ̄i ∈ ∆i

Definition 2.11 (Mixed strategy Nash Equilibrium ). Let a game G = (I, S, u). A strategy profile
σ∗ = (σ∗

1 , σ
∗
2 , . . . , σ

∗
n), consisting of mixed strategies, is a (mixed strategy) Nash Equilibrium of G if for

every player i = 1, 2, . . . , n we have that

σ∗
i ∈ BRi(σ

∗
−i).

Definition 2.12 (Nash Equilibrium (NE)). Let a normal game G = (I, S, u). A Nash Equilibrium of G
is either a pure or a mixed strategy Nash Equilibrium of G.

Observation 2.13 (A property of mixed strategy Nash Equilibria). Suppose σ∗ is a mixed strategy NE.
Then for each player i ∈ N ,
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1. given σ∗
−i, player player i obtains the same payoff, say vi, with any action to which σ∗

i assigns
strictly positive probability. That is player i is indifferent between any of the strategies that
he uses with strictly positive probability in the NE σ∗.

2. given σ∗
−i, player i obtains at most the payoff vi with any action to which σ∗

i assigns zero proba-
bility.

Observation 2.14 (Existence Nash Equilibria). Every finite normal game has at least one NE.

Example 2.15 (Employee monitoring). An employee can work (W ) or shirk (S). His salary is $100
unless he is caught shirking. In the latter case the salary is $0. The cost of working for the employee is
$50.

The manager may monitor (M) the employee or not (N). The cost of monitoring is $10 . The value of
the employee’s work for the manager is $200 if the employee works and $0 if he shirks.

Employee

Manager
M N

S 0,−10 100,−100
W 50, 90 50, 100

Employee monitoring

Note that there are no NE in pure strategies. Let us look for a NE in mixed strategies of the form

σ1 = xS + (1− x)W, 0 ≤ x ≤ 1

σ2 = yM + (1− y)N 0 ≤ y,≤ 1

The expected utility of the players in this equilibrium are

u1(σ1, σ2) = 0× xy + 100x(1− y) + 50y(1− x) + 50(1− x)(1− y) = 50 + x(50− 100y)

u2(σ1, σ2) = −10xy − 100x(1− y) + 90y(1− x) + 100(1− x)(1− y) = 100− 200x+ y(100x− 10)

From this, we see that

BR1(y) = BR1(σ2) =


x = 0 if y > 1/2

x ∈ [0, 1] if y = 1/2

x = 1 if y < 1/2

and

BR2(x) = BR2(σ1) =


y = 0 if x < 1/10

y ∈ [0, 1] if x = 1/10

y = 1 if x > 1/10

Graphically,
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x

y

BR1(y)

BR2(x)

11
10

1

1
2

The intersection of the graphs yields the Nash equilibria of the game. The unique NE is x∗ = 1
10 , y = 1

2 .
That is,

σ∗
1 =

1

10
S +

9

10
W,

σ∗
2 =

1

2
M +

1

2
N

The expected payoffs are u1 = $50 for the employee and u2 = $80 for the manager.

Observation 2.16.

1. No NE in pure strategies.

2. A unique NE in mixed strategies. Employee shirks with probability 1/10. Manager monitors with
probability 1/2. The expected payoffs are $50 for the employee and $80 for the manager.

3. Both players are indifferent between their strategies. Each player chooses the mixed
strategy that makes his opponent indifferent. This yields a general procedure to com-
pute the NE in mixed strategies.

Example 2.17 (Natural Monopoly). Two firms consider entering a market. The market generates total
profits of $300. There is a fixed cost of entry of $200. If both firms enter the market they share equally
the profifs.

Firm 1

Firm 2
I O

I −50,−50 100, 0
O 0, 100 0, 0

Natural Monopoly

Note that there are two NE in pure strategies: (I,O) and (O, I). Let us look for a NE in mixed strategies
of the form

σ1 = xI + (1− x)O, 0 ≤ x ≤ 1

σ2 = yI + (1− y)O 0 ≤ y,≤ 1

The expected utility of the players in this equilibrium are

u1(σ1, σ2) = −50xy + 100x(1− y) + 0× y(1− x) + 0× (1− x)(1− y) = 100x− 150xy = 10x(10− 15y)

u2(σ1, σ2) = −50xy + 0× x(1− y) + 100y(1− x) + 0× (1− x)(1− y) = 100y − 150xy = 10y(10− 15x)
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From this, we see that

BR1(y) = BR1(σ2) =


x = 1 if y < 2/3

x ∈ [0, 1] if y = 2/3

x = 0 if y > 2/3

and

BR2(x) = BR2(σ1) =


y = 1 if x < 2/3

y ∈ [0, 1] if x = 2/3

y = 0 if x > 2/3

Graphically,

x

y

BR1(y)

BR2(x)

12/3

1

2/3

The intersection of the graphs yields the Nash equilibria of the game. There are three NE,

(a) x∗ = 0, y = 1. That is,

σ1 = I

σ2 = O

with payoffs u1 = $100 u2 = $0.

(b) x∗ = 1, y = 0. That is,

σ1 = O

σ2 = I

with payoffs u1 = $0 u2 = $100.

(c) x∗ = y = 2
3 . That is,

σ1 =
2

3
I +

1

3
O, 0 ≤ x ≤ 1

σ2 =
2

3
I +

1

3
O 0 ≤ y,≤ 1

with payoffs u1 = u2 = $0.

Observation 2.18. Note that in the mixed NE we have the following two types of (bad) situations
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1. Coordination failure: Both firms enter the market. The probability that this happens is

2

3
× 2

3
=

4

9

2. Loss of opportunity: No firm enters the market. The probability that this happens is

1

3
× 1

3
=

1

9

If both firm coordinate on a coin (for example, firm 1 enters when heads and firm 2 enters when heads)
the expected profits are

1

0
× 0 +

1

0
× 100 = 50

3 Bertrand Duopoly with Differentiated Products

We now study the case in which firms offer different products to the market; each firm produces a different
good. Firms choose prices.

Suppose there are two firms: firm 1 and firm 2. Each firm chooses the price for its product without
knowing the price the other firm has chosen. Prices are denoted by p1 and p2, respectively. The cost to
firm i of producing quantity qi is ci(qi) = cqi.

Products are differentiated. That is, if f the prevailing prices in the market are (p1, p2) the quantity that
consumers demand from firm 1 is

q1(p1, p2) = max{0, a− p1 + bp2}

and the quantity that consumers demand from firm 2:

q2(p1, p2) = max{0, a− p2 + bp1}

with 0 ≤ b < 2. Thus, products are different, but they compete in a single market: low prices of the
rival’s product lowers the demand for my own product.

We may study this situation as a normal game in which players have a continuum of strategies:

1. The set of players is I = {Firm 1,Firm 2}.

2. The sets of strategies are S1 = S2 = [0,+∞).

3. The payoff functions are

u1(p1, p2) = q1(p1, p2)(p1 − c)

u(p1, p2) = q2(p1, p2)(p2 − c)

If firms choose prices such that

a− p1 + bp2 ≥ 0, a− p2 + bp1 ≥ 0

then

u1(p1, p2) = (a− p1 + bp2)(p1 − c)

u2(p1, p2) = (a− p2 + bp1)(p2 − c)

We compute now the NE of the above game. This consists of price pair (p∗1, p
∗
2) such that p∗1 is

Firm 1’s best response to Firm 2’s price p∗2 , and p∗2 is Firm 2’s best response to Firm 1’s price p∗1.
That is, p∗1 is a solution of
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max
p1≥0

u1(p1, p
∗
2) = (a− p1 + bp∗2)(p1 − c)

and p∗2 is a solution of

max
p2≥0

u2(p
∗
1, p2) = (a− p2 + bp∗1)(p2 − c)

The FOC for firm 1 is
∂u1(p1, p

∗
2)

∂p1
= 0

That is, a+ c− 2p1 + bp2 = 0 so, we must have

p∗1 =
a+ c+ bp∗2

2

Likewise, the FOC for firm 2 yields

p∗2 =
a+ c+ bp∗1

2

Note that the SOC hold for both firms

∂2u1(p1, p
∗
2)

∂p21
=

∂2u2(p1, p
∗
2)

∂p22
= −2 < 0

Therefore, if (p∗1, p
∗
2) is a NE we must have that

p∗1 =
a+ c+ bp∗2

2

p∗2 =
a+ c+ bp∗1

2

We obtain

p∗1 = p∗2 =
a+ c

2− b

4 Public goods

Two agent have an initial wealth w1 > 1, w2 > 1. They have to contribute part of their wealth towards
a public good. If agent i = 1, 2 contributes the amount ci towards the public good, the utilities of the
agents is

u1(c1, c2) = ln (2c1 + c2)− c1, u2(c1, c2) = ln (c1 + 2c2)− c2

We first describe the situation as a static game. The players are N = {1, 2}. Their strategy sets are
S1 = [0, w1], S2 = [0, w2]. And their payoffs are represented by the utility functions above.

We now compute the Nash equilibria of the game. Let us start with the best reply of player 1. We have
to compute the solution of the following maximization problem.

max
c1

ln (2c1 + c2)− c1

The first order condition is
2

2c1 + c2
= 1

So,

BR1(c2) =
2− c2

2

Similarly the best reply of player 2 is

BR2(c2) =
2− c1

2
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c1

c2

BR1(c2)

BR2(c1)

2

2

2/3

2/3

And the NE have to satisfy the equations

c1 =
2− c2

2

c2 =
2− c1

2

The solution is

c∗1 = c∗2 =
2

3

The utilities are u∗
1 = u∗

2 = ln(5/3)− 2/3 ≈ 0.026

The social optimal, given by maxc1,c2 (u1(c1, c2) + u2(c1, c2)), is given by the first order conditions

2

2c1 + c2
+

1

c1 + 2c2
= 1

1

2c1 + c2
+

2

c1 + 2c2
= 1

The solution is c̄1 = c̄2 = 1. The utilities are ū1 = ū2 = ln(3)− 1 ≈ 0.098. Under the NE the production
of the public good is below the optimum.

5 Hotelling/Downs model of electoral competition

Proposed by Hotelling (1929) and Downs (1957).

Voters:

• Each voter v has a favorite policy on v ∈ [0, 1]; She has single-peaked preference and her utility
decreases as the winner’s position is further away from her favorite policy. For example, uv(t) =
−|v − t|.
Each voter will vote sincerely, choosing the party whose position is closest to her favorite policy.

• Voters are distributed according to a distribution function F (v) defined on [0, 1].

– F (0) = 0.

– F is strictly increasing [0, 1].

– F (1) = 1.

Political parties:
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• There are 2 political parties.

• Parties compete by choosing a policy on the interval t1, t2 ∈ [0, 1].

• The party with most votes wins; if there is a draw, each party has a 50% chance of winning.

• Parties only care about winning, and will commit to the platforms they have chosen.

Median Voter Theorem: Let m be the median voter position, F (m) = 1/2. Theres is a unique NE:
(m,m).

6 Reporting a crime (From the book of Martin J. Osborne)

A crime is observed by n people. Each person would like the police to be informed, but prefers that
somebody else goes through the trouble of informing the police.

We assume that the utility of each agent i = 1, . . . , n is

• v > 0 if somebody else informs the police.

• v − c > 0 if agent i informs the police.

• 0 if nobody informs the police.

This is a game with N = {1, . . . , n} agents. The set of strategies of agent i ∈ N is Si = {I,N}. This
game has n NE. In each of these NE one of the agents informs the police and no other does. Why?

Let us look for a symmetric NE in mixed strategies of the form

σ = σi = pI + (1− p)N

Then player i is indifferent between I and N . Since,

ui(I, σ−i) = v − c

ui(N, σ−i) = 0 · Pr{no other agent calls}+ v · (1− Pr{no other agent calls})
= v · (1− Pr{no other agent calls})

we must have
v − c = v · (1− Pr{no other agent calls})

That is
c

v
= Pr{no other agent calls} = (1− p)n−1

So,

p = 1−
( c

v

) 1
n−1

Note that 0 < c/v < 1, so 0 < p < 1. We conclude that there is a unique symmetric NE in mixed
strategies of the form

σi = pI + (1− p)N, p = 1−
( c

v

) 1
n−1

, i = 1, . . . , n

Not that,

1. Since,

lim
n→∞

( c

v

) 1
n−1

= 1

and
(
c
v

) 1
n−1 is increasing we have that, as n increases, the probability that a given agent i reports

decreases to 0.
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2. The probability that in the NE nobody reports to the police is

Pr{no agent calls} = Pr{agent i does not call} · Pr{no other agent calls}

= (1− p) ·
( c

v

)
Since p decreases to 0 with n, we see that Pr{no agent calls} increases to c

v with n. That is, the
larger the group of witnesses the less likely it is that the police are informed about the crime.
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