UNIVERSITY CARLOS III

Master in Economics

Master in Industrial Economics and Markets
Game Theory
TEST 2-December 14th, 2018

NAME:

Two graduate students share an apartment. They have to spend some time cleaning the apartment daily. If each of them spends x_{1}, x_{2} hours cleaning, their utilities are

$$
\begin{aligned}
& u_{1}\left(x_{1}, x_{2}\right)=\left(18+x_{2}\right) x_{1}-2 x_{1}^{2} \\
& u_{2}\left(x_{1}, x_{2}\right)=\left(18+x_{1}\right) x_{2}-2 x_{2}^{2}
\end{aligned}
$$

Note that the time spent in cleaning increases the utility of both tenants. That is, cleaning has a positive externality. On the other hand, the time spent cleaning imposes a personal cost.
(a) If both students decide independently the time spent cleaning, how much time will they devote to cleaning? What are their utilities?

Solution: Agent 1 maximizes $\max _{x_{1}} u_{1}=\left(18+x_{2}\right) x_{1}-2 x_{1}^{2}$. The first order condition is

$$
\frac{\partial u_{1}}{\partial x_{1}}=18+x_{2}-4 x_{1}=0
$$

Note that the second derivative with respect to x_{1} is

$$
\frac{\partial^{2} u_{1}}{\partial x_{1}^{2}}=-4
$$

Hence, the first order condition corresponds to a maximum of u_{1}. The best reply of agent 1 is

$$
\mathrm{BR}_{1}\left(x_{2}\right)=\frac{18+x_{2}}{4}
$$

Likewise, agent 2 maximizes $\max _{x_{2}}\left(18+x_{1}\right) x_{2}-2 x_{2}^{2}$. The best reply of agent 2 is

$$
\mathrm{BR}_{2}\left(x_{1}\right)=\frac{18+x_{1}}{4}
$$

The NE is the solution to

$$
q_{1}=\frac{18+x_{2}}{4}, \quad q_{2}=\frac{18+x_{1}}{4}
$$

The $N E$ is $x_{1}^{*}=x_{2}^{*}=6$. The utilities of the agents are $u_{1}^{*}=u_{2}^{*}=72$.
(b) Suppose now they could make a joint agreement on how much time each should spend on cleaning. Which is the amount of time each should spend on cleaning that maximizes their joint welfare?
Solution: Now, the agents maximize

$$
\max _{x_{1}, x_{2}}\left(18+x_{2}\right) x_{1}-2 x_{1}^{2}+\left(18+x_{1}\right) x_{2}-2 x_{2}^{2}
$$

The solution is $\bar{x}_{1}=\bar{x}_{2}=9$. The utilities of the agents are $\bar{u}_{1}^{*}=\bar{u}_{2}^{*}=81$.
(c) Would they follow the agreement reached in part (b) or would they have incentives to deviate?

Solution: The agreement in part (b) is not a NE. For example,

$$
\mathrm{BR}_{1}(9)=\frac{27}{4}=6.75 \neq \bar{x}_{1}
$$

with utility

$$
u_{1}\left(\frac{27}{4}, 9\right)=\frac{729}{8}=91.125
$$

Thus, the agents have incentives to deviate.

