UNIVERSITY CARLOS III

Master in Industrial Economics and Markets

 Game TheoryTEST 2 -November 2017- SOLUTION

NAME:
(1) Consider the following game in extensive form

(a) Write the normal form of the sub-game that starts at at node 1.2. Find all the Nash equilibria of this sub-game, in pure as well as in mixed strategies. Compute the payoffs of the players (4 points)

Solution: The normal form of the sub-game that starts at at node 1.1 is,

	X	Y
A	$\underline{2}, \underline{2}$	0,1
B	1,1	$\underline{4}, \underline{3}$

There are two NE in pure strategies: (A, X) with payoffs $(2,2)$ and (B, Y) with payoffs $(4,3)$. Now we look for a mixed strategy equilibrium of the form

$$
\begin{aligned}
\sigma_{1} & =p A+(1-p) B \\
\sigma_{2} & =q X+(1-q) Y
\end{aligned}
$$

The expected utilities of player 1 are

$$
\begin{aligned}
u_{1}\left(A, \sigma_{2}\right) & =2 q \\
u_{1}\left(B, \sigma_{2}\right) & =q+4(1-q)=4-3 q
\end{aligned}
$$

So, player 1 is indifferent between the strategies X and Y if and only if $2 q=4-3 q$, that is if and only if $q=\frac{4}{5}$. On the other hand, the expected utilities of player 2 are

$$
\begin{aligned}
& u_{2}\left(\sigma_{1}, X\right)=2 p+1-p=1+p \\
& u_{2}\left(\sigma_{1}, Y\right)=p+3(1-q)=3-2 p
\end{aligned}
$$

So, player 2 is indifferent between the strategies A and B if and only if $1+p=3-2 p$, that is if and only if $p=\frac{2}{3}$. We conclude that there is a mixed strategy NE of the form

$$
\sigma=\left(\frac{2}{3} A+\frac{1}{3} B, \frac{4}{5} X+\frac{1}{5} Y\right)
$$

with payoffs $u_{1}(\sigma)=\frac{8}{5}$ and $u_{2}(\sigma)=\frac{5}{3}$.

Solution: We use the notation
to the denote the strategies followed by the players. For each of the NE of the sub-game that starts in node 1.2 there is a corresponding SPNE. In particular, we obtain the following two NE,

$$
((W, B), Y) \quad \text { with payoffs } \quad u_{1}=4, u_{2}=3
$$

and

$$
\left(\left(Z, \frac{2}{3} A+\frac{1}{3} B\right), \frac{4}{5} X+\frac{1}{5} Y\right) \quad \text { with payoffs } \quad u_{1}=2, u_{2}=5
$$

Note that for player 1 the payoff of the $\mathrm{NE}(A, X)$ is 2 which coincides with the payoff for this player when he chooses W. In other words, if player 1 anticipates the NE (A, X) in the sub-game that starts in node 1.2 , then this player is indifferent between the strategies Z and W. Thus, there is continuum of SPNE of the form

$$
((p Z+(1-p) W, A), X), 0 \leq p \leq 1, \quad \text { with payoffs } \quad u_{1}=2, u_{2}=5 p+2(1-p)=2+3 p
$$

