UNIVERSITY CARLOS III

Master in Economics

Master in Industrial Economics and Markets

Game Theory

Quiz 1-October 7th, 2022

NAME:

PLEASE, CHOOSE ONE (AND ONLY ONE) OF THE FOLLOWING EXERCISES

Exercise 1: Assume that two firms, 1 and 2, produce heterogeneous products and the quantities demanded by the market, when these firms fix prices p_{1} and p_{2}, are, respectively:

$$
\begin{aligned}
& x_{1}\left(p_{1}, p_{2}\right)=60-p_{1}+\frac{p_{2}}{2} \\
& x_{2}\left(p_{1}, p_{2}\right)=60-p_{2}+\frac{p_{1}}{2}
\end{aligned}
$$

These demand functions describe a situation in which products are not perfectly homogenous. Suppose that both firms have constant marginal costs $M C=30$ and $M C 2=30$ and that the features of the market are such that both firms have to set prices simultaneously.
(a) Describe the situation as a game. Write the profit functions, $\pi_{1}\left(p_{1}, p_{2}\right)$ and $\pi_{2}\left(p_{1}, p_{2}\right)$, of the firms.

Solution: There are two players, $N=\{1,2\}$. The strategy sets are $S_{1}=S_{2}=[0, \infty)$. The payoffs of the firms are the profits.

$$
\begin{aligned}
& \pi_{1}\left(p_{1}, p_{2}\right)=\left(60-p_{1}+\frac{p_{2}}{2}\right)\left(p_{1}-30\right)=\frac{p_{1} p_{2}}{2}-p_{1}^{2}+90 p_{1}-15 p_{2}-1800 \\
& \pi_{2}\left(p_{1}, p_{2}\right)=\left(60-p_{2}+\frac{p_{1}}{2}\right)\left(p_{2}-30\right)=\frac{p_{1} p_{2}}{2}-15 p_{1}-p_{2}^{2}+90 p_{2}-1800
\end{aligned}
$$

(b) Compute the best reply of each firm.

Solution: Firm 1's best response to a price set by firm 2 is

$$
\mathrm{BR}_{1}\left(p_{2}\right)=\frac{p_{2}+180}{4}
$$

Fiirm 2's best response to a price set by firm 1 is

$$
\mathrm{BR}_{2}\left(p_{1}\right)=\frac{p_{1}+180}{4}
$$

(c) Find the Nash equilibrium $\left(p_{1}^{*}, p_{2}^{*}\right)$. Determine equilibrium profits, $\pi_{1}\left(p_{1},{ }^{*} p_{2}^{*}\right)$ and $\pi_{2}\left(p_{1}^{*}, p_{2}^{*}\right)$.

Solution: The Nash equilibrium $\left(p_{1}^{*}, p_{2}^{*}\right)$ is the solution of the following system of equations

$$
\begin{aligned}
& p_{1}=\frac{p_{2}+180}{4} \\
& p_{2}=\frac{p_{1}+180}{4}
\end{aligned}
$$

The solution is

$$
p_{1}^{*}=p_{2}^{*}=60
$$

The equilibrium profits are

$$
\pi_{1}\left(p_{1}^{*}, p_{2}^{*}\right)=\pi_{2}\left(p_{1}^{*}, p_{2}^{*}\right)=900
$$

(d) Suppose now that firm 1 considers the possibility of acquiring firm 2. In such case firm 1 can choose p_{1} and p_{2} so that it maximimes $\pi_{1}\left(p_{1}, p_{2}\right)+\pi_{2}\left(p_{1}, p_{2}\right)$.

- What is the maximum price firm 1 is willing to pay to acquire firm 2?

Solution: The firm maximizes

$$
\pi\left(p_{1}, p_{2}\right)=\pi_{1}\left(p_{1}, p_{2}\right)+\pi_{2}\left(p_{1}, p_{2}\right)=-p_{1}^{2}+p_{1} p_{2}+75 p_{1}-p_{2}^{2}+75 p_{2}-3600
$$

with respect p_{1}, p_{2}. The first order conditions are

$$
\begin{array}{r}
-2 p_{1}+p_{2}+75=0 \\
p_{1}-2 p_{2}+75=0
\end{array}
$$

The solution is $\bar{p}_{1}=\bar{p}_{2}=75$. And the new profit is $\bar{\pi}=2025$. Thus, the maximum prize firm 1 is willing to pay for the acquisition of firm 2 is $2025-900=1125$.

- What is the minimum price firm 2 is willing to accept for the acquisition?

Solution: The minimum prize firm 2 is willing to accept is 900 .

- Is it possible that the purchase takes place?

Solution: Any price between 900 and 1125 will be acceptable for both firms.

Exercise 2: Consider the following normal form game:

	X	Y	Z	U
A	1,0	0,2	2,10	1,5
B	0,10	$-1,7$	1,4	10,1
C	2,15	1,10	1,5	1,2

(a) What are the strategies that survive the iterated elimination of strictly dominated strategies?

Solution: Strategy U is dominated by strategy Z for player 2. After eliminating this strategy we obtain the following game

			Y
	Z		
A	1,0	0,2	2,10
B	0,10	$-1,7$	1,4
C	2,15	1,10	1,5

Now strategy B is dominated by strategy A for player 1 . After eliminating this strategy we obtain the following game

			Y

Note also that the mixed strategy $\sigma_{2}=\frac{2}{3} X+\frac{1}{3} Z$ dominates Y, because

$$
\begin{aligned}
& u_{2}\left(A, \sigma_{2}\right)=\frac{2}{3} \times 0+\frac{1}{3} \times 10=\frac{10}{3}>2=u_{2}(A, Y) \\
& u_{2}\left(C, \sigma_{2}\right)=\frac{2}{3} \times 15+\frac{1}{3} \times 5=\frac{35}{3}>10=u_{2}(C, Y)
\end{aligned}
$$

(See also the argument in part (c) below).
The rationalizable strategies are $\{A, C\} \times\{X, Z\}$.
(b) Find all pure strategy Nash equilibria and the payoffs of these equilibria.
(c) Compute the mixed strategy Nash equilibria and the expected payoffs of these equilibria.

Solution:

Let us look for a NE of the form

$$
\begin{aligned}
\sigma_{1} & =p A+(1-p) B \\
\sigma_{2} & =x X+y Y+(1-x-y) Z
\end{aligned}
$$

We compute the expected utilities of the players

$$
\begin{aligned}
u_{1}\left(A, \sigma_{2}\right) & =2-x-2 y \\
u_{1}\left(C, \sigma_{2}\right) & =1+x \\
u_{2}\left(\sigma_{1}, X\right) & =15-15 p \\
u_{2}\left(\sigma_{1}, Y\right) & =10-8 p \\
u_{2}\left(\sigma_{1}, Z\right) & =5+5 p
\end{aligned}
$$

We graph the utilities of player 2 .

We see that Y is not part of any best reply for player 2 . Hence, we may assume $y=0$. And

$$
\begin{aligned}
\sigma_{1} & =p A+(1-p) C \\
\sigma_{2} & =x X+(1-x) Z
\end{aligned}
$$

Also, from the picture we see that best reply of player 2 is

$$
\mathrm{BR}_{2}\left(\sigma_{1}\right)=\left\{\begin{array}{lll}
X \quad(x=1) & \text { if } 0 \leq p=1 / 2 \\
\{X, Z\} \quad(0 \leq x \leq 1) & \text { if } 0 \leq p=1 / 2 \\
\mathrm{Z} \quad(x=0) & \text { if } 1 / 2<p \leq 1
\end{array}\right.
$$

Since,

$$
\begin{aligned}
& u_{1}\left(A, \sigma_{2}\right)=2-x \\
& u_{1}\left(Z, \sigma_{2}\right)=1+x
\end{aligned}
$$

we have that $u_{1}\left(A, \sigma_{2}\right) \geq u_{1}\left(Z, \sigma_{2}\right)$ iff $x \leq 1 / 2$. Thus, best reply of player 1 is

$$
\mathrm{BR}_{1}\left(\sigma_{2}\right)= \begin{cases}A \quad(p=1) & \text { if } 0 \leq x<\frac{1}{2} \\ \{A, C\} \quad(p \in[0,1]) & \text { if } x=\frac{1}{2} \\ C \quad(y=0) & \text { if } 1 \geq x>\frac{1}{2}\end{cases}
$$

Graphically,

We obtain the NE

$$
\begin{array}{rlrl}
(x=0, p=1),(A, Z), & \text { with payoffs } u_{1} & =2, u_{2}=10 . \\
(x=1, p=0),(C, X), & \text { with payoffs } u_{1} & =2, u_{2}=15 . \\
\left(\frac{1}{2} A+\frac{1}{2} C, \frac{1}{2} X+\frac{1}{2} Z\right), & & \text { with payoffs } u_{1} & =\frac{3}{2}, u_{2}=\frac{15}{2} .
\end{array}
$$

