UNIVERSITY CARLOS III

Master in Economics

Master in Industrial Economics and Markets Game Theory

TEST 1. October 16th, 2020

NAME:

Consider the following normal form game

		Player 2		
		X	Z	
Player		A	2,1	0,1
	B	3,6	2,1	4,3
		2,10	1,15	2,10

(a) What are the strategies that survive the iterated elimination of strictly dominated strategies?

Strategy C is dominated by strategy B for player 1. After eliminating this strategy we obtain the following game

		Player 2		
	X		Y	Z
Player 1	A	2,1	0,1	5,3
		3,6	2,1	4,3

Now strategy Y is dominated by strategy Z for player 2. After eliminating this strategy we obtain the following game

		Player 2	
	X	Z	
Player 1	A	2,1	
		3,3	
		3,6	

The rationalizable strategies are $\{A, B\} \times\{X, Z\}$.
(b) Find all pure strategy Nash equilibria and the payoffs of these equilibria. The best responses of the players are

		Player 2	
		X	Z
Player 1	A	2,1	$\underline{5}, \underline{3}$
	$B, \underline{3}, \underline{3}$	4,3	

Hence, the NE are:

- (A, Z) with payoffs $(5,3)$; and
$-(B, X)$ with payoffs $(3,6)$.
(c) Compute the mixed strategy Nash equilibria and the expected payoffs of these equilibria. Let us look for a NE of the form

$$
(p A+(1-p) B, q X+(1-q) Z)
$$

We compute the expected utilities of the players

$$
\begin{aligned}
& u_{1}(A, q X+(1-q) Z)=2 q+5-5 q=5-3 q \\
& u_{1}(B, q X+(1-q) Z)=3 q+4-4 q=4-q \\
& u_{2}(p A+(1-p) B, X)=p+6-6 p=6-5 p \\
& u_{2}(p A+(1-p) B, Z)=3
\end{aligned}
$$

Thus, we have that $5-3 q=4-q$, so $q=1 / 2$. And $6-5 p=3$, so $p=3 / 5$. Thus,

$$
\left(\frac{3}{5} A+\frac{2}{5} B, \frac{1}{2} X+\frac{1}{2} Z\right)
$$

is a mixed strategy NE. The payoffs of the players are $\left(\frac{7}{2}, 3\right)$.

