UNIVERSITY CARLOS III

Master in Economics

Master in Industrial Economics and Markets

Game Theory

TEST 1-October 9th, 2019

NAME:

Consider the following normal form game:

		Player 2		
		X	Y	Z
Player	A	B	2,2	6,4
		4,6	2,2	10,1
	C	$2,2,0$		
		3,7	$10,-1$	

(a) What are the strategies that survive the iterated elimination of strictly dominated strategies? Hint: One of the players has a strategy which is strictly dominated by a mixed strategy composed by the other two strategies.
Solution: Strategy Z is dominated by strategy Y for player 2. After eliminating this strategy we obtain the following game

Player 2	
Y 2,2 6,4 4,6 2,2 2,2 3,7	

Strategy C is dominated by the mixed strategy

$$
\sigma=\frac{1}{2} A+\frac{1}{2} B
$$

for player 1, because

$$
\begin{aligned}
& u_{1}(\sigma, X)=\frac{1}{2} \times 2+\frac{1}{2} \times 4=3>u_{1}(C, X) \\
& u_{1}(\sigma, Y)=\frac{1}{2} \times 6+\frac{1}{2} \times 2=4>u_{1}(C, Y)
\end{aligned}
$$

After eliminating this strategy we obtain the following game

> | | | Player 2 | |
| :---: | :---: | :---: | :---: |
| | X | | Y |
| Player 1 | A | 2,2 | 6,4 |
| | | 4,6 | 2,2 |
| | | | |

The rationalizable strategies are $\{A, B\} \times\{X, Y\}$.
(b) Find all pure strategy Nash equilibria and the payoffs of these equilibria.

Solution: Let us look for a NE of the form

$$
\begin{aligned}
\sigma_{1} & =x A+(1-x) B \\
\sigma_{2} & =y X+(1-y) Y
\end{aligned}
$$

We compute the expected utilities of the players

$$
\begin{aligned}
u_{1}\left(A, \sigma_{2}\right) & =2 y+6(1-y)=6-4 y \\
u_{1}\left(B, \sigma_{2}\right) & =4 y+2(1-y)=2+2 y \\
u_{2}\left(\sigma_{1}, X\right) & =2 x+6(1-x)=6-4 x \\
u_{2}\left(\sigma_{1}, Z\right) & =4 x+2(1-x)=2+2 x
\end{aligned}
$$

Note that
(a) $6-4 y<2+2 y$ iff $\frac{2}{3}<y \leq 1$.
(b) $6-4 y=2+2 y$ for $y=\frac{2}{3}$.

Thus, we have that best reply of player 1 is

$$
\operatorname{BR}_{1}\left(\sigma_{2}\right)= \begin{cases}A(x=1) & \text { if } \quad 0 \leq y<\frac{2}{3} \\ {[0,1]} & \text { if } y=\frac{2}{3} \\ B(x=0) & \text { if } \frac{2}{3}<y \leq 1\end{cases}
$$

Note that
(a) $6-4 x<2+2 x$ iff $\frac{2}{3}<x \leq 1$.
(b) $6-4 x=2+2 x$ for $x=\frac{2}{3}$.

Thus, we have that best reply of player 2 is t

$$
\mathrm{BR}_{2}\left(\sigma_{1}\right)= \begin{cases}X(y=1) & \text { if } \quad 0 \leq x<\frac{2}{3} \\ {[0,1]} & \text { if } \quad x=\frac{2}{3} \\ B(y=0) & \text { if } \quad \frac{2}{3}<x \leq 1\end{cases}
$$

Graphically,

We obtain two NE in pure strategies: $x=0, y=1$ and $x=1, y=0$. That is we obtain the NE

$$
(B, X) \quad \text { with payoffs } \quad u_{1}=2, u_{2}=4
$$

and

$$
(A, Y) \text { with payoffs } \quad u_{1}=4, u_{2}=2
$$

(c) Compute the mixed strategy Nash equilibria and the expected payoffs of these equilibria.

Solution: From the previous part we see that the NE in mixed strategies correspond to $x=y=\frac{2}{3}$. That is,

$$
\begin{aligned}
\sigma_{1} & =\frac{2}{3} A+\frac{1}{3} B \\
\sigma_{2} & =\frac{2}{3} X+\frac{1}{3} Y
\end{aligned}
$$

with payoffs $u_{1}=u_{2}=\frac{10}{3}$.

