UNIVERSITY CARLOS III

Master in Economics

Master in Industrial Economics and Markets

Game Theory

TEST 1-OCTOBER 2017

NAME:

Consider the following normal form game:

	X	Y	Z
A	1,0	0,2	4,10
B	2,25	$2,\!20$	4,0
C	0,10	-1,3	3,-2

(a) What are the strategies that survive the iterated elimination of strictly dominated strategies?
 Strategy C is dominated by strategy A for player 1. After eliminating this strategy we obtain the following game

	X	Y	Z
A	1,0	0,2	4,10
B	2,25	2,20	4,0

(b) Find all pure strategy Nash equilibria and the payoffs of these equilibria. The best responses of the players are

	X	Y	Z
A	1,0	0,2	<u>4,10</u>
B	<u>2,25</u>	<u>2</u> ,20	<u>4</u> ,0

Hence, the NE are (A, Z), with payoffs $u_1 = 4$, $u_2 = 10$ and (B, X), with payoffs $u_1 = 2$, $u_2 = 25$.

(c) Compute the mixed strategy Nash equilibria and the expected payoffs of these equilibria. Let us look for a NE of the form (σ_1, σ_2) with

 $\sigma_1 = pA + (1-p)B, \quad \sigma_2 = q_1X + q_2Y + (1-q_1-q_2)Z$

We compute the expected utilities of the players

$$u_{1}(A, \sigma_{2}) = 4 - 3q_{1} - 4q_{2}$$

$$u_{1}(B, \sigma_{2}) = 4 - 2q_{1} - 2q_{2}$$

$$u_{2}(\sigma_{1}, X) = 25 - 25p$$

$$u_{2}(\sigma_{1}, Y) = 20 - 18p$$

$$u_{2}(\sigma_{1}, Z) = 10p$$

Suppose first that p = 0 or p = 1. If p = 0, then the best reply of player 2 is to choose X and if p = 1, then the best reply of player 2 is to choose Z. These NE correspond to the pure strategy NE found in part (b).

Let us look now for a NE in which player 1 uses a completely mixed strategy, $0 . Note that <math>u_1(B, \sigma_2) - u_1(A, \sigma_2) = 2q_2 + q_1 \ge 0$. Hence, $u_1(B, \sigma_2) \ge u_1(A, \sigma_2)$ for every $0 \le q_1, q_2 \le 1$ and $u_1(B, \sigma_2) > u_1(A, \sigma_2)$, unless $q_1 = q_2 = 0$. We conclude that player 1 can be indifferent between strategies A and B only if player 2 is using strategy Z. That is only if $q_1 = q_2 = 0$.

On the other hand, strategy Z is a best reply of player 2 to the strategy σ_1 of player 1 if and only if $u_2(\sigma_1, Z) \ge u_2(\sigma_1, X)$ and $u_2(\sigma_1, Z) \ge u_2(\sigma_1, Y)$. That is, only if

$$10p \ge 25 - 25p$$
 and $10p \ge 20 - 18p$

which occurs if and only if

$$p \ge \frac{5}{7}$$

Hence, there are infinitely many mixed strategy equilibria of the form

$$(pA + (1-p)B, Z) \quad \frac{5}{7} \le p \le 1$$

The payoffs are $u_1 = 4$, $u_2 = 10p$.