UNIVERSITY CARLOS III

Master in Economics

Master in Industrial Economics and Markets

Game Theory

TEST 1-OCTOBER 2017

NAME:

Consider the following normal form game:

	X	Y	Z
A	1,0	0,2	4,10
B	2,25	2,20	4,0
C	0,10	$-1,3$	$3,-2$

(a) What are the strategies that survive the iterated elimination of strictly dominated strategies?

Strategy C is dominated by strategy A for player 1. After eliminating this strategy we obtain the following game

		X	Y
	Z		
A	1,0	0,2	4,10
B	2,25	2,20	4,0

(b) Find all pure strategy Nash equilibria and the payoffs of these equilibria. The best responses of the players are

		X	Y
Z			
A	1,0	0,2	$\underline{4}, \underline{10}$
B	$\underline{2}, \underline{25}$	$\underline{2}, 20$	$\underline{4}, 0$

Hence, the NE are (A, Z), with payoffs $u_{1}=4, u_{2}=10$ and (B, X), with payoffs $u_{1}=2, u_{2}=25$.
(c) Compute the mixed strategy Nash equilibria and the expected payoffs of these equilibria. Let us look for a NE of the form $\left(\sigma_{1}, \sigma_{2}\right)$ with

$$
\sigma_{1}=p A+(1-p) B, \quad \sigma_{2}=q_{1} X+q_{2} Y+\left(1-q_{1}-q_{2}\right) Z
$$

We compute the expected utilities of the players

$$
\begin{aligned}
u_{1}\left(A, \sigma_{2}\right) & =4-3 q_{1}-4 q_{2} \\
u_{1}\left(B, \sigma_{2}\right) & =4-2 q_{1}-2 q_{2} \\
u_{2}\left(\sigma_{1}, X\right) & =25-25 p \\
u_{2}\left(\sigma_{1}, Y\right) & =20-18 p \\
u_{2}\left(\sigma_{1}, Z\right) & =10 p
\end{aligned}
$$

Suppose first that $p=0$ or $p=1$. If $p=0$, then the best reply of player 2 is to choose X and if $p=1$, then the best reply of player 2 is to choose Z. These NE correspond to the pure strategy NE found in part (b).

Let us look now for a NE in which player 1 uses a completely mixed strategy, $0<p<1$. Note that $u_{1}\left(B, \sigma_{2}\right)-$ $u_{1}\left(A, \sigma_{2}\right)=2 q_{2}+q_{1} \geq 0$. Hence, $u_{1}\left(B, \sigma_{2}\right) \geq u_{1}\left(A, \sigma_{2}\right)$ for every $0 \leq q_{1}, q_{2} \leq 1$ and $u_{1}\left(B, \sigma_{2}\right)>u_{1}\left(A, \sigma_{2}\right)$, unless $q_{1}=q_{2}=0$. We conclude that player 1 can be indifferent between strategies A and B only if player 2 is using strategy Z. That is only if $q_{1}=q_{2}=0$.
On the other hand, strategy Z is a best reply of player 2 to the strategy σ_{1} of player 1 if and only if $u_{2}\left(\sigma_{1}, Z\right) \geq$ $u_{2}\left(\sigma_{1}, X\right)$ and $u_{2}\left(\sigma_{1}, Z\right) \geq u_{2}\left(\sigma_{1}, Y\right)$. That is, only if

$$
10 p \geq 25-25 p \quad \text { and } \quad 10 p \geq 20-18 p
$$

which occurs if and only if

$$
p \geq \frac{5}{7}
$$

Hence, there are infinitely many mixed strategy equilibria of the form

$$
(p A+(1-p) B, Z) \quad \frac{5}{7} \leq p \leq 1
$$

The payoffs are $u_{1}=4, u_{2}=10 p$.

