UNIVERSITY CARLOS III

Master in Economics

Master in Industrial Economics and Markets

Game Theory

MIDTERM EXAM-October 28th, 2022

Instructions: Total time. 2 hours. This is NOT an open book exam. Calculators are allowed. Write your work on this booklet. Unsupported unswers will receive little credit.

Problem 1: Agents 1 (kettledrums) and 2 (trumpet) like to play music together. For this, they have to practice separately, so that when they meet each one knows well his part. If agent 1 spends x_{1} hours practicing his part and agent 2 spends x_{2} hours practicing her part, their utilities are

$$
\begin{aligned}
& u_{1}\left(x_{1}, x_{2}\right)=\sqrt{x_{1} x_{2}}-x_{1}^{2} \\
& u_{2}\left(x_{1}, x_{2}\right)=\sqrt{x_{1} x_{2}}-x_{2}^{2}
\end{aligned}
$$

(a) (10 points) What is the most favorable agreement that maximizes the welfare of both agents? What are the utilities of each agent in this agreement? (You may assume the solution is symmetric $x_{1}=x_{2}$)

Solution: The players maximize the sum of the utilities

$$
\max _{x_{1}, x_{2}} u_{1}+u_{2}=2 \sqrt{x_{1} x_{2}}-x_{1}^{2}-x_{2}^{2}
$$

The first order conditions are

$$
\begin{aligned}
0 & =\frac{x_{2}}{\sqrt{x_{1} x_{2}}}-2 x_{1} \\
0 & =\frac{x_{1}}{\sqrt{x_{1} x_{2}}}-2 x_{2}
\end{aligned}
$$

We obtain solution $x_{1}=x_{2}=\frac{1}{2}$. The utilities of the players are

$$
u_{1}\left(\frac{1}{4}, \frac{1}{4}\right)=u_{2}\left(\frac{1}{4}, \frac{1}{4}\right)=\frac{1}{4}
$$

(b) (10 points) Suppose from now on, that after the meeting both agents decide the time they practice x_{1} and x_{2} simultaneously and without knowing what the other one is doing. Find the best response function of each agent, $\mathrm{BR}_{1}\left(x_{2}\right)$ and $\mathrm{BR}_{2}\left(x_{1}\right)$.
Solution: Player 1 maximizes $u_{1}\left(x_{1}, x_{2}\right)=\sqrt{x_{1} x_{2}}-x_{1}^{2}$ The first order condition is

$$
\frac{x_{2}}{2 \sqrt{x_{1} x_{2}}}-2 x_{1}=0
$$

The best reply of player 1 is

$$
x_{1}\left(x_{2}\right)=\left(\frac{x_{2}}{16}\right)^{\frac{1}{3}}
$$

Similarly, the best reply of player 2 is

$$
x_{2}\left(x_{1}\right)=\left(\frac{x_{1}}{16}\right)^{\frac{1}{3}}
$$

(c) (5 points) Why the agreement reached in part (a) will not be implemented if each agent takes its decision simultaneous and independently?
Solution: Because

$$
\begin{aligned}
& \mathrm{BR}_{1}\left(\frac{1}{2}\right)=\left(\frac{1}{32}\right)^{\frac{1}{3}} \neq \frac{1}{2} \\
& \mathrm{BR}_{2}\left(\frac{1}{2}\right)=\left(\frac{1}{32}\right)^{\frac{1}{3}} \neq \frac{1}{2}
\end{aligned}
$$

(d) (10 points) Find the Nash equilibrium $\left(x_{1}^{*}, x_{2}^{*}\right)$ if the agents take their decisions simultaneous and independently. Compute the utilities of the agents in the NE. (You may assume the solution is symmetric $x_{1}=x_{2}$)
Solution: The NE is the solution of

$$
x_{1}=\left(\frac{x_{2}}{16}\right)^{\frac{1}{3}}, \quad x_{2}=\left(\frac{x_{1}}{16}\right)^{\frac{1}{3}}
$$

That is

$$
x_{1}^{*}=x_{2}^{*}=\frac{1}{4}
$$

The utilities of the players are

$$
u_{1}\left(\frac{1}{2}, \frac{1}{2}\right)=u_{2}\left(\frac{1}{2}, \frac{1}{2}\right)=\frac{3}{16}
$$

Problem 2: Consider the following dynamic form game.

(a) (20 points) Write the normal form of the game that starts at node 1.2 and find all (that is, in pure and mixed strategies) NE of this game.
Solution: The normal form game is

	X	Y
A	1,0	16,1
B	11,1	1,0

In problem 1 we have computed the NE of this game.
(a) (A, Y) with payoffs $u_{1}=16, u_{2}=1$;
(b) (B, X) with payoffs $u_{1}=11, u_{2}=1$; and
(c) $\left(\frac{1}{2} A+\frac{1}{2} B, \frac{3}{5} X+\frac{3}{5} Y\right)$, with payoffs $u_{1}=7, u_{2}=\frac{1}{2}$.
(b) (10 points) Write the normal form of the game that starts at node 1.3 and find all (that is, in pure and mixed strategies) NE of this game.
Solution: The normal form game is

	R	S
C	0,3	1,2
D	$1,-1$	2,0
	$1,-1$	

Strategy C is (strictly) dominated by D,

Now, strategy S is dominated by S,

$$
\begin{gathered}
\\
\\
\\
\hline
\end{gathered}
$$

There is a unique equilibrium with payoffs $u_{1}=2, u_{2}=0$.
(c) (20 points) Find the subgame perfect Nash equilibria of the complete game. Compute the utilities attained by the players in each SPNE.
Solution: At node 2.1 , player 2 chooses U. The payoffs at the sub-game starting at node 2.1 are $u_{1}=10$, $u_{2}=\frac{2}{3}$.

(a) Let us look for a SPNE in which at node 1.2 the $N E(A, Y)$ is played.

At node 1.1 player 1 chooses E. We have the $\operatorname{SPNE}:(E,(A, Y), U,(D, S))$, with payoffs $u_{1}=16, u_{2}=1$.
(b) Let us look for a SPNE in which at node 1.2 the $N E(B, X)$ is played.

At node 1.2 player 1 chooses E. We have the $\operatorname{SPNE}(E,(B, X), U,(D, S))$, with payoffs $u_{1}=11$, $u_{2}=1$.
(c) Let us look for a SPNE in which at node 1.2 the $N E\left(\frac{1}{2} A+\frac{1}{2} B, \frac{3}{5} X+\frac{3}{5} Y\right)$ is played.

At node 1.2 player 1 chooses F. We have the $\operatorname{SPNE}\left(F,\left(\frac{1}{2} A+\frac{1}{2} B, \frac{3}{5} X+\frac{3}{5} Y\right), U,(D, S)\right)$, with payoffs $u_{1}=10, u_{2}=\frac{2}{3}$.

Problem 3: Two agents engage in a sequential bargaining process as follows:

1. In stage 1 , agent A proposes $0 \leq x \leq 300$.
(a) If agent B accepts, agent A gets x, agent B gets $300-x$.
(b) If agent B refuses, they go into the stage 2 .
2. In stage 2, agent B proposes $0 \leq y \leq 200$.
(a) If agent A accepts, agent A gets $200-y$, agent B gets y.
(b) If agent A refuses, agent A gets the amount c and agent B gets the amount d.

Assume $c+d<100$.
(a) (10 points) Describe the situation as an extensive form game. Draw the tree that represents the game.

Solution:

There are infinitely many subgames.
(b) (10 points) Compute the subgame perfect Nash equilibria of this game. Write the strategies of the players at each node. Write the payoffs of the players in each of the SPNE.
Solution: At node A.2, agent A accepts iff $200-y \geq c$. That is agent A accepts iff $y \leq 200-c$. Given the best reply of agent A at node $A .2$, the best response of agent B at node $B .2$ is to offer $y=200-c$. Thus, we may assume that if we ever reach node B.2, agent B will offer $y=200-c$ and agent A accepts. The payoffs will be $u_{A}=c, u_{B}=200-c>d$. We replace this payoffs at node A. 2

Now, player B at node $B .1$ accepts iff $300-x \geq 200-c$. That, is at node B.1 player B accepts iff $x \leq 100+c$. The best response now for player A is to offer $x=100+c$ at node A.1. The SPNE is the following.

- Node A.1: $x=100+c$.
- Node B.1: accept iff $x=\leq 100+c$.
- Node B.2: $y=200-c$.
- Node A.2: accept iff $y \leq 200-c$.

The payoffs are $u_{A}=100+c, u_{B}=200-c$.
(c) (5 points) Is there a player who wins/looses if c increases? Which one(s)?

Solution: Since, the payoffs are $u_{A}=100+c, u_{B}=200-c$, agent A is better off and agent B is worse off.
(d) (5 points) Is there a player who wins/looses if d increases? Which one(s)?

Solution: Since, the payoffs are $u_{A}=100+c, u_{B}=200-c$, the value of d plays no role.
(e) Imagine now that, if, in the second stage agent A refuses, they go into a third stage:
3. In stage 3 , agent A proposes $0 \leq z \leq 100$. If agent B accepts, agent A gets z, agent B gets $100-z$. If agent B refuses, agent A gets the amount c and agent B gets the amount d.
(a) (20 points) Describe the new dynamic game and compute the SPNE.

Solution: The SPNE is the following.

- Node A.1: $x=200-d$.
- Node B.1: accept iff $x=\leq 200-d$.
- Node B.2: $y=100+d$.
- Node A.2: accept iff $y \leq 100+d$.
- Node A.3: $z=100-d$.
- Node B.3: accept iff $z \leq 100-d$.

The payoffs are $u_{A}=200-d, u_{B}=100+d$.

(b) (5 points) Is there a player who wins/looses if c increases? Which one(s)?

Solution: Since, the payoffs are $u_{A}=200-d, u_{B}=100+d$, the value of c plays no role.
(c) (5 points) Is there a player who wins/looses if d increases? Which one(s)?

Solution: Since, the payoffs are $u_{A}=200-d, u_{B}=100+d$, agent B is better off and agent A is worse off.
(d) (10 points) Depending on the parameters c, d who prefers the 2 -stage bargaining procedure versus the 3-stage bargaining procedure?

Solution:

Since, $c+d<100$, we have that $100+c<200-d$ and $200-c>100+d$. Therefore, A prefers the two-stage game and agent B prefers the three-stage game.

Problem 4: Consider a market with two firms and a homogeneous product. The inverse demand function is $p=150-3\left(q_{1}+q_{2}\right)$, where q_{1} is the output of firm 1 and q_{2} is the output of firm 2 . The firms have constant
marginal cost $c=6$. Firm 1 (the leader) chooses its output level q_{1} first. Then, firm 2 (the follower) chooses its output level q_{2}, after observing q_{1}.
(a) (10 points) Describe the situation as an extensive form game. Write the payoffs of the firms.

Solution: The set of player is $N=\{1,2\}$. The strategy set for player 1 is $S_{1}=[0, \infty)$. The strategy set for player 2 consists of functions $q_{2}\left(q_{1}\right):[0, \infty) \rightarrow[0, \infty)$. The associated tree is

The profits of the firms are

$$
\begin{aligned}
& \pi_{1}\left(q_{1}, q_{2}\right)=\left(150-3 q_{1}-3 q_{2}\right) q_{1}-6 q_{1}=144 q_{1}-3 q_{1}^{2}-3 q_{1} q_{2} \\
& \pi_{2}\left(q_{1}, q_{2}\right)=\left(150-3 q_{1}-3 q_{2}\right) q_{2}-6 q_{2}=144 q_{2}-3 q_{1} q_{2}-3 q_{2}^{2}
\end{aligned}
$$

(b) (20 points) Compute the subgame perfect Nash equilibria of this game. Write the strategies of the players at each node. Write the payoffs of the players in each of the SPNE.
Solution: Firm 2 maximizes its profit function. The first order condition is

$$
-3 q_{2}-3\left(-48+q_{1}+q_{2}\right)=0
$$

Firm 2's best response to a price set by firm 1 is

$$
\mathrm{BR}_{2}\left(q_{1}\right)=\max \left\{0, \frac{48-q_{1}}{2}\right\}
$$

Now, in taking its decision, Firm 1 anticipates the reaction of Firm 2. Firm 1 maximizes

$$
\pi_{1}\left(q_{1}, \frac{48-q_{1}}{2}\right)=144 q_{1}-3 q_{1}^{2}-3 q_{1}\left(\frac{48-q_{1}}{2}\right)=72 q_{1}-\frac{3 q_{1}^{2}}{2}
$$

The first order condition is

$$
72-3 q_{1}=0
$$

and we obtain $q_{1}^{S}=24, q_{2}^{S}=\mathrm{BR}_{2}(24)=12$. The profits are $\pi_{1}^{S}(24,12)=864$ and $\pi_{2}^{S}(24,12)=432$.
(c) (20 points) Suppose now that firms decide simultanous and independently the quantities q_{1} and q_{2}. That is, assume that now firm 2 does not observe q_{1} when it decides q_{2}. Compute the Cournot-Nash equilibrium of the resulting game. As compared with the previous situation, is there firm which is better/worse off? Which one(s)? In doing your computations, you may assume the Cournot-Nash is symmetric.
Solution:

$$
\mathrm{BR}_{1}\left(q_{2}\right)=\max \left\{0, \frac{48-q_{2}}{2}\right\} \quad \mathrm{BR}_{2}\left(q_{1}\right)=\max \left\{0, \frac{48-q_{1}}{2}\right\}
$$

The Nash-Cournot equilibrium is the solution of the following system of equations

$$
q_{1}=\frac{48-q_{2}}{2}, \quad q_{2}=\frac{48-q_{1}}{2}
$$

The solution is $q_{1}^{*}=q_{2}^{*}=16$. The profits of the firms are $\pi_{1}^{*}(16,16)=\pi_{2}^{*}(16,16)=768$. Firm 1 is better off with the Stackelberg setting. Firm 2 is better off with the Cournot setting.

