UNIVERSITY CARLOS III

Game Theory
 MIDTERM EXAM-November 6th, 2018

NAME:

Problem 1: Consider the following normal form game:	X		Y	Z
	A	0, 1	20, 1	15, 2
	B	1, 0	30, 0	10, 1
	C	10, 2	2, -1	0, 1
	D	5, 1	5, 4	-1, 5

(a) (5 points) What are the strategies that survive the iterated elimination of strictly dominated strategies? Solution: Strategy Y is strictly dominated by strategy Z for player 2. We obtain

	X	Z
A	0,1	15,2
B	1,0	10,1
C	10,2	0,1
D	5,1	$-1,5$

Now, strategy D is strictly dominated by strategy C for player 1. We obtain

	X	Z
	0,1	15,2
B	1,0	10,1
C	10,2	0,1

The set of rationalizable strategies is $\{A, B, C\} \times\{X, Z\}$.
(b) (5 points) Find all pure strategy Nash equilibria and the payoffs of these equilibria.

Solution: The best replies of the players are

		X
	Z	
A	0,1	$\underline{15}, \underline{2}$
B	1,0	$10, \underline{1}$
C	$\underline{10, \underline{2}}$	0,1

We obtain the $N E(A, Z)$ with payoffs $u_{1}=15, u_{2}=2$ and (C, X) with payoffs $u_{1}=10, u_{2}=2$.
(c) (15 points) Compute the mixed strategy Nash equilibria and the expected payoffs of these equilibria.

Solution: Let us look for a NE of the form

$$
\begin{aligned}
\sigma_{1} & =x A+y B+(1-x-y) C \\
\sigma_{2} & =p X+(1-p) Z
\end{aligned}
$$

The expected utilities of player 1 are

$$
\begin{aligned}
& u_{1}\left(A, \sigma_{2}\right)=0 \times p+15(1-p)=15-15 p \\
& u_{1}\left(B, \sigma_{2}\right)=1 \times p+10(1-p)=10-9 p \\
& u_{1}\left(C, \sigma_{2}\right)=10 p+0 \times(1-p)=10 p
\end{aligned}
$$

Graphically,

Thus,

$$
\mathrm{BR}_{1}\left(\sigma_{2}\right)= \begin{cases}x=1, y=0 & \text { if } p<\frac{3}{5} \\ x \in[0,1], y=0 & \text { if } p=\frac{3}{5} \\ x=0, y=0 & \text { if } p>\frac{3}{5}\end{cases}
$$

And we see that player 1 will not use strategy B. Hence we may assume $y=0$. The expected utilities of player 2 are

$$
\begin{aligned}
& u_{2}\left(\sigma_{1}, X\right)=1 \times x+0 \times y+2(1-x-y)=2-x-2 y \\
& u_{2}\left(\sigma_{1}, Y\right)=2 x+1 \times y+1 \times(1-x-y)=1+x
\end{aligned}
$$

In the NE, we must have that $y=0$. Hence, we may assume

$$
\begin{aligned}
u_{2}\left(\sigma_{1}, X\right) & =2-x \\
u_{2}\left(\sigma_{1}, Y\right) & =1+x
\end{aligned}
$$

Hence,

$$
\mathrm{BR}_{2}\left(\sigma_{1}\right)=\left\{\begin{array}{lll}
p=1 & \text { if } & x<\frac{1}{2} \\
{[0,1]} & \text { if } & x=\frac{1}{2} \\
p=0 & \text { if } & x>\frac{1}{2}
\end{array}\right.
$$

Graphically,

And we obtain three NE
(a) $x=0, y=0, p=1$. That is, (C, X) with payoffs $u_{1}=10, u_{2}=2$.
(b) $x=1, y=0, p=0$. That is, (A, Z) with payoffs $u_{1}=15, u_{2}=2$.
(c) $x=\frac{1}{2}, y=0, p=\frac{3}{5}$. That is,

$$
\left(\frac{1}{2} A+\frac{1}{2} C, \frac{3}{5} X+\frac{2}{5} Z\right)
$$

with payoffs $u_{1}=6, u_{2}=\frac{3}{2}$.
Problem 2: Two agents, 1 and 2, produce heterogeneous products. If the two agents set, respectively, prices p_{1} and p_{2} the quantities demanded of the products of the two agents will be,

$$
\begin{aligned}
& x_{1}\left(p_{1}, p_{2}\right)=\max \left\{0,90-p_{1}+\frac{p_{2}}{2}\right\} \\
& x_{2}\left(p_{1}, p_{2}\right)=\max \left\{0,90-p_{2}+\frac{p_{1}}{2}\right\}
\end{aligned}
$$

Assume that the agents have constant marginal costs $\mathrm{MC}_{1}=\mathrm{MC}_{2}=30$. Assume also that the characteristics of the market are such that the agents have to set simultaneously the prices.
(a) (5 points) Write down the agents' profits, $\pi_{1}\left(p_{1}, p_{2}\right)$ and $\pi_{2}\left(p_{1}, p_{2}\right)$, as functions of the prices they set.

Solution: Assuming that the demand is positive, the profits of the agents are

$$
\begin{aligned}
& \pi_{1}\left(p_{1}, p_{2}\right)=\left(90-p_{1}+\frac{p_{2}}{2}\right)\left(p_{1}-30\right)=120 p_{1}-p_{1}^{2}-15 p_{2}+\frac{p_{1} p_{2}}{2}-2700 \\
& \pi_{2}\left(p_{1}, p_{2}\right)=\left(90-p_{2}+\frac{p_{1}}{2}\right)\left(p_{2}-30\right)=120 p_{2}-p_{2}^{2}-15 p_{1}+\frac{p_{1} p_{2}}{2}-2700
\end{aligned}
$$

(b) (10 points) Find the best response of both agents: $\mathrm{BR}_{1}\left(p_{2}\right)$ and $\mathrm{BR}_{2}\left(p_{1}\right)$. Draw the best response function and the Nash equilibrium in the $p_{1}-p_{2}$ plane (p_{1} on the horizontal axis and p_{2} on the vertical axis).
Solution: The first order condition for agent 1 is

$$
\frac{\partial \pi_{1}}{\partial p_{1}}=120-2 p_{1}+\frac{1}{2} p_{2}=0
$$

The solution is the best reply of player 1

$$
\mathrm{BR}_{1}\left(p_{2}\right)=\frac{1}{4}\left(p_{2}+240\right)
$$

Note that the second order condition is fulfilled.

$$
\frac{\partial^{2} \pi_{1}}{\partial p_{1}^{2}}=-2<0
$$

Similarly, best reply of player 2 is

$$
\mathrm{BR}_{2}\left(p_{1}\right)=\frac{1}{4}\left(p_{1}+240\right)
$$

Graphically,

(c) (10 points) Find the Nash equilibrium $\left(p_{1}^{*}, p_{2}^{*}\right)$ and the equilibrium profits $\pi_{1}\left(p_{1},{ }^{*} p_{2}^{*}\right)$ and $\pi_{2}\left(p_{1}^{*}, p_{2}^{*}\right)$.

Solution: The NE is the solution to the equations

$$
p_{1}=\operatorname{BR}_{1}\left(p_{2}\right), \quad p_{2}=\operatorname{BR}_{2}\left(p_{1}\right)
$$

That is

$$
\begin{aligned}
& p_{1}=\frac{1}{4}\left(p_{2}+240\right) \\
& p_{2}=\frac{1}{4}\left(p_{1}+240\right)
\end{aligned}
$$

The NE is

$$
p_{1}^{*}=p_{2}^{*}=80
$$

The profits are

$$
\pi_{1}\left(p_{1}^{*}, p_{2}^{*}\right)=\pi_{2}\left(p_{1}^{*}, p_{2}^{*}\right)=2500
$$

Problem 3: Consider the following extensive form game.

(a) (5 points) Write the set strategies for each player. Write the normal form of the game.

Solution: The set of strategies for the players are $S_{1}=\{A, B\}, S_{2}=\{X, Y\}$. The game may be represented by the table

\[

\]

(b) (10 points) Find all Nash equilibria of this game.

Solution: Let us look for a NE of the form

$$
\begin{aligned}
\sigma_{1} & =p A+(1-p) B \\
\sigma_{2} & =q X+(1-q) Y
\end{aligned}
$$

We compute the expected utilities of the players

$$
\begin{aligned}
u_{1}\left(A, \sigma_{2}\right) & =1 \\
u_{1}\left(B, \sigma_{2}\right) & =4 q \\
u_{2}\left(\sigma_{1}, X\right) & =1+3 q \\
u_{2}\left(\sigma_{1}, Y\right) & =4 q
\end{aligned}
$$

Thus, we have that best reply of player 1 is

$$
\operatorname{BR}_{1}\left(\sigma_{2}\right)=\left\{\begin{array}{lll}
p=1 & \text { if } & 0 \leq q<\frac{1}{4} \\
{[0,1]} & \text { if } & q=\frac{1}{4} \\
p=0 & \text { if } & \frac{1}{4}<q \leq 1
\end{array}\right.
$$

And the best reply of player 2 is

$$
\mathrm{BR}_{2}\left(\sigma_{1}\right)= \begin{cases}q=1 & \text { if } \quad 0 \leq p<1 \\ {[0,1]} & \text { if } \quad q=1\end{cases}
$$

Graphically,

We see that there are two NE, (A, Y), with payoffs $u_{1}=1, u_{2}=4$ and (B, X), with payoffs $u_{1}=4, u_{2}=1$, in pure strategies and the following $N E$

$$
(A, q X+(1-q) Y) \quad 0 \leq q \leq \frac{1}{4}
$$

with payoffs $u_{1}=1, u_{2}=4$, in mixed strategies.
(c) (5 points) Find the subgame perfect Nash equilibrium of the game.

Solution: There are two subgames. The NE of the subgame that starts in node 1.2 is X. Thus, the SPNE is (B, X) with payoffs $u_{1}=4, u_{2}=1$.
(d) (5 points) Can you identify a non-credible threat?

Solution: The $N E(A, Y)$ is a non-credible threat.
Problem 4: Suppose that two agents are negotiating an agreement. If the two parties reach an agreement immediately, each will have a gain of 200. If the two parties don't achieve an agreement immediately they will have a second and last chance of achieving an agreement in a month. If the agreement is reached in a month, agent A will have a gain of 80 and agent B will have a gain of 90 . Negotiation works in the following way: In the first period agent A demands a payment of agent B in order to sign the agreement. If agent B accepts, the agreement is reached, the payoff to agent A will be 200 plus the payment that agent B has accepted to make. And the payoff to agent B will be 200 minus the payment it has accepted to make. If agent B rejects the offer, it will make an offer to agent A in the second period with the offer consisting again of a demand of a payment in order to sign the agreement.
(a) (15 points) Describe the situation as an extensive form game. How many subgames does it have?

Solution: The extensive game form representation is the following.

- There is one subgame that starts at A.1.
- There are infinitely many subgames that start at B. 1
- There is one subgame that starts at B.2.
- There are infinitely many subgames that start at A.2.
(b) (10 points) Conpute the subgame perfect Nash equilibrium of this game. Write the strategies of the players at each node. Write the payoffs of the players in the SPNE.
Solution: At node A.2, firm A accepts iff $80-d_{2} \geq 0$. That is, firm A accepts iff $d_{2} \leq 80$. Given the best reply of firm A at node $A .2$, the best response of firm B at node $B .2$ is to offer $d_{2}=80$. Thus, we may assume that if we ever reach node B.2, firm B will offer $d_{2}=80$ and firm A accepts. The payoffs will be $u_{A}=0, u_{B}=170$. We replace this payoffs at node B. 2

Now, player B at node B.1 accepts iff $200-d_{1} \geq 170$. That is, at node B.1 player B accepts iff $d_{1} \leq 30$. The best response now for player A is to offer $d_{1}=30$ at node $A .1$ and player B accepts. The SPNE is the following.

- Node A.1: $d_{1}=30$.
- Node B.1: accept iff $d_{1} \leq 30$.
- Node B.2: $d_{2}=80$.
- Node A.2: accept iff $d_{2} \leq 80$.

The payoffs are $u_{A}=230, u_{B}=170$.

