UNIVERSITY CARLOS III

Master in Economics
Master in Industrial Economics and Markets Game Theory. Final Exam January 24th, 2018

TIME: 2 hours. Write your answers in this booklet.

NAME:

Problem 1:

Problem 2: Consider the following normal form game.

	A	B	C
A	7,7	1,10	1,1
B	10,1	4,4	1,1
	1,1	1,1	2,2

(1) Find the Nash equilibria in pure strategies.

Solution: There are two NE in pure strategies (B, B) and (C, C).
(2) Suppose that the above game is played two times. Can you find a sub-game perfect NE of the repeated game with the following properties?
(a) no mixed strategies of the stage game are used.
(b) (A, A) is played in the first stage.

Solution: We try the trigger strategy. Each player $i=1,2$ plays the following

- At $t=1$ play A.
- At $t=2$ play B if (A, A) was played at stage $t=1$. Otherwise, play C.

If both players follow the grim strategy their payoffs are $u_{1}^{*}=u_{2}^{*}=7+4=11$. We check if the above strategy constitutes a NE of the whole game. No player has incentives to deviate at $t=2$, since the strategy proposed is a NE of the stage game.

If say player $i=1,2$ deviates at $t=1$ and the other player $j \neq i$ follows the grim strategy, the payoff for player i is $u_{i}=10+2=12$. Hence, both players have incentive to deviate. Therefore, the grim strategy is not a NE of the repeated game. The answer to the question is no.
(3) Suppose that the above game is played three times. Can you find a sub-game perfect NE of the repeated game in which (A, A) is played in the first stage?

Solution: We try the trigger strategy. Each player $i=1,2$ plays the following

- At $t=1$ play A.
- At $t=2$ play B if (A, A) was played at stage $t=1$. Otherwise, play C.
- At $t=3$ play B if (A, A) was played at stage $t=1$ and (B, B) was played at stage $t=2$. Otherwise, play C.

If both players follow the grim strategy their payoffs are $u_{1}^{*}=u_{2}^{*}=7+4+4=15$. We check if the above strategy constitutes a NE of the whole game. No player has incentives to deviate at $t=1,2$, since the strategy proposed plays a NE of the stage game in each period.

If say player $i=1,2$ deviates at $t=1$ and the other player $j \neq i$ follows the grim strategy, the payoff for player i is at most $u_{i}=10+2+2=14$. Hence, no player has incentives to deviate. Therefore, the grim strategy is a SPNE of the repeated game. The answer to the question is yes.

Problem 3:

Problem 4: Consider the following signalling game. There are two types of player $1, t=t_{1}$ and $t=t_{2}$.

(1) One of the types of player 1 has a dominating strategy. Which one?

Solution: If player t_{1} plays L his maximum payoff would be 2 . If he plays R his minimum payoff is 3 . Hence, R is a dominant strategy for player t_{1}. We will assume that in any PBNE , $\sigma\left(t_{1}\right)=R$.
(2) Compute all the separating perfect Bayesian Nash equilibria (in pure strategies) of the above game. Write the separating PBNE, including the beliefs of player 2. Justify your answer.

Solution: By part (1) the only candidate for a separating PBNE is $\sigma\left(t_{1}\right)=R$, $\sigma\left(t_{2}\right)=L$. In this equilibrium the beliefs of player 2 are

$$
\mu_{2}(c \mid R)=1, \mu_{2}(b \mid L)=1
$$

Given these beliefs, the best reply of player 2 is

$$
\operatorname{BR}_{2}\left(R \mid \mu_{2}\right)=\{u\}, \quad \operatorname{BR}_{2}\left(L \mid \mu_{2}\right)=\{d\}
$$

Graphically,

Now, anticipating that player 2 will play $\sigma_{2}(R)=\{u\}$ and $\sigma_{2}(L)=\{d\}$, the optimal strategy for player 1 is to choose $\sigma\left(t_{1}\right)=R, \sigma\left(t_{2}\right)=\{L, R\}$. We conclude that the following is a PBNE.

$$
\begin{array}{rlrl}
\sigma\left(t_{1}\right) & = & R, \quad \sigma\left(t_{2}\right)=L \\
\sigma_{2}(R) & =u, & \sigma_{2}(L)=d \\
\mu_{2}(a \mid L) & =0, & \mu_{2}(b \mid L)=1 \\
\mu_{2}(c \mid R) & =1, \quad \mu_{2}(d \mid R)=0
\end{array}
$$

(3) Compute all the pooling perfect Bayesian Nash equilibria (in pure strategies) of the above game. Write the pooling PBNE, including the beliefs of player 2. Justify your answer.

Solution: By part (1) the only candidate for a pooling PBNE is $\sigma\left(t_{1}\right)=R, \sigma\left(t_{2}\right)=R$. In this equilibrium the beliefs of player 2 are

$$
\begin{aligned}
& \mu_{2}(a \mid L)=x, \quad \mu_{2}(b \mid L)=1-x \\
& \mu_{2}(c \mid R)=0.4, \quad \mu_{2}(d \mid R)=0.6
\end{aligned}
$$

Given these beliefs, the expected utilities of player 2 , given R, are

$$
\begin{aligned}
& u_{2}(u \mid R)=0.4 \times 4+0.6 \times 0=1.6 \\
& u_{2}(d \mid R)=0.4 \times 1+0.6 \times 1=1
\end{aligned}
$$

Hence, $\operatorname{BR}_{2}\left(R \mid \sigma_{1}, \mu_{2}\right)=\{u\}$. Graphically,

On the other hand, the expected utilities of player 2 , given L, are

$$
\begin{aligned}
& u_{2}(u \mid L)=x \times 1+(1-x) \times 0=x \\
& u_{2}(d \mid R)=x \times 0+(1-x) \times 1=1-x
\end{aligned}
$$

Hence,

$$
\mathrm{BR}_{2}(R)= \begin{cases}u & \text { if } x>1 / 2 \\ u, d & \text { if } x=1 / 2 \\ d & \text { if } x<1 / 2\end{cases}
$$

Suppose $x>1 / 2$. Then $\mathrm{BR}_{2}(R)=u$ and player t_{2} would like to deviate from the strategy $\sigma\left(t_{2}\right)=R$ to $\sigma\left(t_{2}\right)=L$. We conclude that there there is no pooling equilibrium with $x>1 / 2$.

On the other hand, if $x \leq 1 / 2$, then d is a best reply for player 2 and player 1 has no incentives to deviate from the strategy $\sigma\left(t_{1}\right)=R, \sigma\left(t_{2}\right)=R$. We see that the following is are PBNE for each value $0 \leq x \leq 1 / 2$,

$$
\begin{aligned}
\sigma\left(t_{1}\right) & =R, \sigma\left(t_{2}\right)=R \\
\sigma_{2}(R) & =u, \sigma_{2}(L)=d \\
\mu_{2}(a \mid L) & =x, \mu_{2}(b \mid L)=1-x \\
\mu_{2}(c \mid R) & =0.4, \mu_{2}(d \mid R)=0.6
\end{aligned}
$$

(4) Imagine player $t=t_{1}$ follows the mixed stragey $x L+(1-x) R$ and player $t=t_{2}$ follows the mixed strategy $y L+(1-y) R$ with $0<x, y<1$. What are the consistent beliefs of player 2?

Solution: Note that

$$
p(a)=0.4 x \quad p(b)=0.6 y, \quad p(c)=0.4(1-x), \quad p(d)=0.6(1-y)
$$

Therefore

$$
\begin{gathered}
\mu_{2}(a \mid L)=\frac{p(a)}{p(a)+p(b)}=\frac{2 x}{2 x+3 y} \quad \mu_{2}(b \mid L)=\frac{p(p)}{p(a)+p(b)}=\frac{3 y}{2 x+3 y} \\
\mu_{2}(c \mid R)=\frac{p(c)}{p(c)+p(d)}=\frac{2(1-x)}{5-2 x-3 y} \quad \mu_{2}(d \mid R)=\frac{p(d)}{p(c)+p(d)}=\frac{3(1-y)}{5-2 x-3 y}
\end{gathered}
$$

