Master in Economics

UNIVERSITY CARLOS III Master in Industrial Economics and Markets Game Theory. Final Exam January 24th, 2018

TIME: 2 hours. Write your answers in this booklet.

NAME:

Problem 1:

Problem 2: Consider the following normal form game.

	A	B	C
A	7,7	$1,\!10$	1,1
B	10, 1	4,4	1,1
C	1, 1	1, 1	2, 2

(1) Find the Nash equilibria in pure strategies.

Solution: There are two NE in pure strategies (B, B) and (C, C).

- (2) Suppose that the above game is played two times. Can you find a sub-game perfect NE of the repeated game with the following properties?
 - (a) no mixed strategies of the stage game are used.
 - (b) (A, A) is played in the first stage.

Solution: We try the trigger strategy. Each player i = 1, 2 plays the following

- At t = 1 play A.
- At t = 2 play B if (A, A) was played at stage t = 1. Otherwise, play C.

If both players follow the grim strategy their payoffs are $u_1^* = u_2^* = 7 + 4 = 11$. We check if the above strategy constitutes a NE of the whole game. No player has incentives to deviate at t = 2, since the strategy proposed is a NE of the stage game.

If say player i = 1, 2 deviates at t = 1 and the other player $j \neq i$ follows the grim strategy, the payoff for player i is $u_i = 10 + 2 = 12$. Hence, both players have incentive to deviate. Therefore, the grim strategy is not a NE of the repeated game. The answer to the question is no.

(3) Suppose that the above game is played three times. Can you find a sub-game perfect NE of the repeated game in which (A, A) is played in the first stage?

Solution: We try the trigger strategy. Each player i = 1, 2 plays the following • At t = 1 play A.

- At t = 2 play B if (A, A) was played at stage t = 1. Otherwise, play C.
- At t = 3 play B if (A, A) was played at stage t = 1 and (B, B) was played at stage t = 2. Otherwise, play C.

If both players follow the grim strategy their payoffs are $u_1^* = u_2^* = 7 + 4 + 4 = 15$. We check if the above strategy constitutes a NE of the whole game. No player has incentives to deviate at t = 1, 2, since the strategy proposed plays a NE of the stage game in each period.

If say player i = 1, 2 deviates at t = 1 and the other player $j \neq i$ follows the grim strategy, the payoff for player i is at most $u_i = 10 + 2 + 2 = 14$. Hence, no player has incentives to deviate. Therefore, the grim strategy is a SPNE of the repeated game. The answer to the question is yes.

Problem 3:

Problem 4: Consider the following signalling game. There are two types of player 1, $t = t_1$ and $t = t_2$.

(1) One of the types of player 1 has a dominating strategy. Which one?

Solution: If player t_1 plays L his maximum payoff would be 2. If he plays R his minimum payoff is 3. Hence, R is a dominant strategy for player t_1 . We will assume that in any PBNE, $\sigma(t_1) = R$.

(2) Compute all the separating perfect Bayesian Nash equilibria (in pure strategies) of the above game. Write the separating PBNE, including the beliefs of player 2. Justify your answer.

Solution: By part (1) the only candidate for a separating PBNE is $\sigma(t_1) = R$, $\sigma(t_2) = L$. In this equilibrium the beliefs of player 2 are

$$\mu_2(c|R) = 1, \mu_2(b|L) = 1$$

Given these beliefs, the best reply of player 2 is

$$BR_2(R|\mu_2) = \{u\}, \quad BR_2(L|\mu_2) = \{d\}$$

Graphically,

Now, anticipating that player 2 will play $\sigma_2(R) = \{u\}$ and $\sigma_2(L) = \{d\}$, the optimal strategy for player 1 is to choose $\sigma(t_1) = R$, $\sigma(t_2) = \{L, R\}$. We conclude that the following is a PBNE.

$\sigma(t_1)$	=	R,	$\sigma(t_2) = L$
$\sigma_2(R)$	=	u,	$\sigma_2(L) = d$
$\mu_2(a L)$	=	0,	$\mu_2(b L) = 1$
$\mu_2(c R)$	=	1,	$\mu_2(d R) = 0$

(3) Compute all the pooling perfect Bayesian Nash equilibria (in pure strategies) of the above game. Write the pooling PBNE, including the beliefs of player 2. Justify your answer.

Solution: By part (1) the only candidate for a pooling PBNE is $\sigma(t_1) = R$, $\sigma(t_2) = R$. In this equilibrium the beliefs of player 2 are

$$\mu_2(a|L) = x, \quad \mu_2(b|L) = 1 - x$$

$$\mu_2(c|R) = 0.4, \quad \mu_2(d|R) = 0.6$$

Given these beliefs, the expected utilities of player 2, given R, are

$$u_2(u|R) = 0.4 \times 4 + 0.6 \times 0 = 1.6$$

$$u_2(d|R) = 0.4 \times 1 + 0.6 \times 1 = 1$$

Hence, $BR_2(R|\sigma_1, \mu_2) = \{u\}$. Graphically,

On the other hand, the expected utilities of player 2, given L, are

$$u_2(u|L) = x \times 1 + (1-x) \times 0 = x$$

$$u_2(d|R) = x \times 0 + (1-x) \times 1 = 1 - x$$

Hence,

$$BR_2(R) = \begin{cases} u & \text{if } x > 1/2\\ u, d & \text{if } x = 1/2\\ d & \text{if } x < 1/2 \end{cases}$$

Suppose x > 1/2. Then BR₂(R) = u and player t_2 would like to deviate from the strategy $\sigma(t_2) = R$ to $\sigma(t_2) = L$. We conclude that there there is no pooling equilibrium with x > 1/2.

On the other hand, if $x \leq 1/2$, then d is a best reply for player 2 and player 1 has no incentives to deviate from the strategy $\sigma(t_1) = R$, $\sigma(t_2) = R$. We see that the following is are PBNE for each value $0 \leq x \leq 1/2$,

$$\begin{aligned} \sigma(t_1) &= R, \sigma(t_2) = R \\ \sigma_2(R) &= u, \sigma_2(L) = d \\ \mu_2(a|L) &= x, \mu_2(b|L) = 1 - x \\ \mu_2(c|R) &= 0.4, \mu_2(d|R) = 0.6 \end{aligned}$$

(4) Imagine player $t = t_1$ follows the mixed stragey xL + (1-x)R and player $t = t_2$ follows the mixed strategy yL + (1-y)R with 0 < x, y < 1. What are the consistent beliefs of player 2?

Solution: Note that

$$p(a) = 0.4x$$
 $p(b) = 0.6y$, $p(c) = 0.4(1-x)$, $p(d) = 0.6(1-y)$

Therefore

$$\mu_2(a|L) = \frac{p(a)}{p(a) + p(b)} = \frac{2x}{2x + 3y} \quad \mu_2(b|L) = \frac{p(p)}{p(a) + p(b)} = \frac{3y}{2x + 3y}$$
$$\mu_2(c|R) = \frac{p(c)}{p(c) + p(d)} = \frac{2(1 - x)}{5 - 2x - 3y} \quad \mu_2(d|R) = \frac{p(d)}{p(c) + p(d)} = \frac{3(1 - y)}{5 - 2x - 3y}$$