\qquad

University Carlos III de Madrid

Master in Economics
Master in Industrial Economics and Markets
Final Exam. Game Theory. 01/13/2023.
Time Limit: 120 Minutes.

Exercise	Points	Score
1	35	
2	45	
3	35	
4	40	
Total:	155	

1. Consider the following game in extensive form

(a) (5 points) What are the sub-games of the above game? It is enough to write the node at which each sub-game starts.
Solution: There are five sub-games that start at the nodes 1.1, 1.2 2.1, 1.3 and 1.4.
(b) (10 points) Write the normal form of the sub-game that starts at at node 1.2. Find the Nash equilibria (in pure and mixed strategies) of this sub-game.
Solution: The normal form of the sub-game that starts at at node 1.2 is,

	G	H
C	$G, 10$	3,8
	3,0	9,2

There are two NE in pure strategies: (C, G) with payoffs $(6,10)$ and (D, H) with payoffs $(9,2)$. In addition, there is mixed strategy $N E$

$$
\left(\left(\frac{1}{2} C+\frac{1}{2} D\right),\left(\frac{2}{3} G+\frac{1}{3} H\right)\right)
$$

with payoffs

$$
u_{1}=u_{2}=5
$$

(c) (20 points) Write the subgame perfect Nash equilibria of the whole game

Solution: The SPNE of the sub-game that starts at at node 2.1 are of the form $\sigma_{2}=$ $x E+(1-x) F, 0 \leq x \leq 1$ with payoffs $u_{1}=x+6(1-x)=6-5 x$ and $u_{2}=3$. We use the notation (1.2, 2.1, 1.3, 1.4). All the SPNE are of the form

$$
(*, x E+(1-x) F, I, K)
$$

a. Let us look for SPN in which in the subgame that starts at 1.2 the $N E(C, G)$ is played.

$(6,10) \quad(6-5 x, 3)$
We obtain the SPNE

$$
(A, x E+(1-x) F, I, K), 0<x \leq 1, \quad u_{1}=6, u_{2}=10
$$

and

$$
(y A+(1-y) B, F, I, K), 0 \leq y \leq 1, \quad u_{1}=6, u_{2}=10+3(1-y)
$$

b. Let us look for SPN in which in the subgame that starts at 1.2 the $N E(D, H)$ is played.

We obtain the SPNE

$$
(A, x E+(1-x) F, I, K), 0 \leq x \leq 1 \quad u_{1}=9, u_{2}=2
$$

c. Let us look for SPN in which in the subgame that starts at 1.2 the $N E\left(\left(\frac{1}{2} C+\frac{1}{2} D\right),\left(\frac{2}{3} G+\frac{1}{3} H\right)\right)$ is played.

We obtain the SPNE

$$
(A, x E+(1-x) F, I, K), \frac{6}{25}<x<1 \quad u_{1}=5, u_{2}=5
$$

$$
(B, x E+(1-x) F, I, K), 0 \leq x<\frac{6}{25} \quad u_{1}=6-5 x, u_{2}=3
$$

and

$$
\left(y A+(1-y) B, \frac{6}{25} E+\frac{19}{25} F, I, K\right), 0 \leq y \leq 1, \quad u_{1}=5, u_{2}=5 y+3(1-y)
$$

2. Two firms produce an externality on each other, that is the production of firm $i=1,2$ affects negatively the profits of firm $j \neq i$. Assume that, if each day, firm 1 produces q_{1} and firm 2 produces q_{2}, the profits of the firms are

$$
\begin{aligned}
& u_{1}=\left(24-q_{2}\right) q_{1}-q_{1}^{2} \\
& u_{2}=\left(24-q_{1}\right) q_{2}-q_{2}^{2}
\end{aligned}
$$

Both firms decide simultaneous and independently the quantities q_{1} and q_{2}.
(a) (10 points) Compute the best reply of each firm if they interact only one day. Compute the NE $\left(q_{1}^{*}, q_{2}^{*}\right)$ and the profits of the firms in the NE.
Solution: The best reply functions of the firms are

$$
\operatorname{BR}_{1}\left(q_{2}\right)=\max \left\{0, \frac{24-q_{2}}{2}\right\}, \quad \operatorname{BR}_{2}\left(q_{1}\right)=\max \left\{0, \frac{24-q_{1}}{2}\right\}
$$

The $N E$ is the solution to $q_{1}=\mathrm{BR}_{1}\left(q_{2}\right), q_{2}=\mathrm{BR}_{2}\left(q_{1}\right)$. That is,

$$
q_{1}=\max \left\{0, \frac{24-q_{2}}{2}\right\}, \quad q_{2}=\max \left\{0, \frac{24-q_{1}}{2}\right\}
$$

We obtain $q_{1}=q_{2}=8$. The profits are $u_{1}=u_{2}=64$.
(b) (10 points) Suppose firms interact only one day and can credibly agree on a production plan $\left(\bar{q}_{1}, \bar{q}_{2}\right)$ that maximizes the joint profit, with $\bar{q}_{1}=\bar{q}_{2}$. What would that agreement be. What would be the profits achieved by the firms?
Solution: The companies maximize

$$
\max _{q_{1}, q_{2}} u_{1}+u_{2}
$$

The first order conditions are

$$
-2 q_{1}-2 q_{2}+24=0, \quad-2 q_{1}-2 q_{2}+24=0
$$

and we obtain $q_{2}=12-q_{1}$. Assuming $q_{1}=q_{2}$, we obtain $\bar{q}_{1}=\bar{q}_{2}=6$. The profits would be $\bar{u}_{1}=\bar{u}_{2}=72$.
(c) (5 points) Suppose firms cannot commit to a production plan. Why the result of the previous part is not reasonable?
Solution: Because $\operatorname{BR}_{i}(6)=9 \neq 6$. Note also that $u_{1}(9,6)=u_{2}(6,9)=81>72$.
(d) (20 points) Suppose now that firms interact an infinite number of days and that each day each firm decides simultaneous and independently a new production plan for the day. Is there a SPNE in which, in the equilibrium path, the production plan $\left(\bar{q}_{1}, \bar{q}_{2}\right)$ is carried out every day.
Solution: Consider the trigger strategy:

- $A t t=1$ play $(6,6)$.
- If $t>1$ play $(6,6)$ if $(6,6)$ was played at previous periods. Play $(8,8)$ otherwise.

We show that the trigger strategy is a NE of the whole game. With the trigger strategy the payoffs of the players are

$$
u_{t}==72+72 \delta+72 \delta^{2}+\cdots+72 \delta^{k}=\frac{72}{1-\delta}
$$

If one player deviates at period 1, her payoff would be at most

$$
u_{t}=81+64 \delta+64 \delta^{2}+\cdots+64 \delta^{k}=81+\frac{64 \delta}{1-\delta}
$$

So, the trigger strategy is a NE of the whole game iff

$$
\frac{72}{1-\delta} \geq 81+\frac{64 \delta}{1-\delta}
$$

that is if $\delta \geq \frac{9}{17}$. Now the standard argument shows that for $\delta \geq \frac{9}{17}$, the trigger strategy is also a NE of every sub-game.
3. Consider the situation in which player 2 knows which game is played (a or b below). However, player 1 only knows that table a is played with probability $\frac{1}{2}$ and table b is played with probability $\frac{1}{2}$.

$$
\begin{aligned}
& \text { Player } 2
\end{aligned}
$$

> a
> Player 2

$$
\begin{aligned}
& \text { b }
\end{aligned}
$$

(a) (5 points) Describe the situation as a Bayesian game.

Solution: There are two players $N=\{1,2\}$. There are two types of player 2: $T_{2}=$ $\{a, b\}$. There is one type of player 1: $T_{1}=\{t\}$. The sets of strategies are $S_{2}=$ $\{C C, C D, D C, D D\}, S_{1}=\{A, B\}$. The beliefs of the players are

$$
\begin{aligned}
p_{2}\left(t_{1}=t \mid t_{2}=a\right) & =p_{2}\left(t_{1}=t \mid t_{2}=b\right)=1 \\
p_{1}\left(t_{2}=a \mid t_{1}=t\right) & =p_{1}\left(t_{2}=c_{\mid} t_{1}=t\right)=1 / 2
\end{aligned}
$$

The payoffs are given by the above tables.
(b) (10 points) Find the Bayesian-Nash equilibria in pure strategies and the payoffs of the players.
Solution: The associated normal form game is

	$C C$		$C D$	$D C$
$C D$				
	$(4,4)$	$(2,5)$	$(3,1)$	$(1,2)$
B	$(3,3)$	$(2,1)$	$(4,4)$	$(3,2)$

and we see that there are two BNE in pure strategies $(A, C D)$ with payoffs $(2,5)$ and ($B, D C$) with payoffs $(4,4)$.
(c) (20 points) Find the Bayesian-Nash equilibria in mixed strategies and the payoffs of the players.
Solution: Let us look for a BNE of the form

$$
(x A+(1-x) B,(y C+(1-y) D, z C+(1-z) D))
$$

Let

$$
\begin{aligned}
& s_{1}=x A+(1-x) B \\
& s_{a}=y C+(1-y) D \\
& s_{b}=z C+(1-z) D
\end{aligned}
$$

We have that

$$
\begin{aligned}
u_{1}\left(A ; s_{a}, s_{b}\right) & =\frac{1}{2}(3 y+1-y)+\frac{1}{2}(5 z+1-z)=1+y+2 z \\
u_{1}\left(B ; s_{a}, s_{b}\right) & =\frac{1}{2}(2 y+4(1-y))+\frac{1}{2}(4 z+2(1-z))=3-y+z \\
u_{a}\left(s_{1}, C\right) & =7 x+1-x=1+6 x \\
u_{a}\left(s_{1}, D\right) & =x+3(1-x)=3-2 x \\
u_{b}\left(s_{1}, C\right) & =x+5(1-x)=5-4 x \\
u_{b}\left(s_{1}, D\right) & =3 x+1-x=1+2 x
\end{aligned}
$$

Suppose first that player $2 a$ is using a completely mixed strategy. Then $u_{a}\left(s_{1}, C\right)=$ $u_{a}\left(s_{1}, D\right)$. Hence, $1+6 x=3-2 x$ and we conclude that $x=\frac{1}{4}$. For this value of x we have that $u_{b}\left(s_{1}, C\right)=\left.(5-4 x)\right|_{x=\frac{1}{4}}=4$ and $u_{b}\left(s_{1}, D\right)=\left.(1+2 x)\right|_{x=\frac{1}{4}}=\frac{3}{2}$, so $z=1$. We check if there is a BNE of the form

$$
\left(\frac{1}{4} A+\frac{3}{4} B ;(y C+(1-y) D, C)\right)
$$

Player 1 must be indifferent between A and B. Hence, $1+y+2 z=3-y+z$. Since $z=1$, we obtain that $y=\frac{1}{2}$. And we have checked that

$$
\left(\frac{1}{4} A+\frac{3}{4} B ;\left(\frac{1}{2} C+\frac{1}{2} D, C\right)\right)
$$

is BNE in mixed strategies with payoffs $u_{1}=\frac{7}{2}, u_{a}=\frac{5}{2}, u_{b}=4$.
Suppose now that player $2 b$ is using a completely mixed strategy. Then $u_{b}\left(s_{1}, C\right)=$ $u_{b}\left(s_{1}, D\right)$. Hence, $5-4 x=1+2 x$ and we conclude that $x=\frac{2}{3}$. For this value of x we have that $u_{a}\left(s_{1}, C\right)=\left.(1+6 x)\right|_{x=\frac{2}{3}}=5$ and $u_{a}\left(s_{1}, D\right)=\left.(3-2 x)\right|_{x=\frac{2}{3}}=\frac{5}{3}$, so $y=1$.

We check if there is a BNE of the form

$$
\left(\frac{2}{3} A+\frac{1}{3} B ;(C, z C+(1-z) D)\right)
$$

Player 1 must be indifferent between A and B. Hence, $1+y+2 z=3-y+z$. Since $y=1$, we obtain that $z=0$. And we have checked that

$$
\left(\frac{2}{3} A+\frac{1}{3} B ;(C, D)\right)
$$

is the other BNE in mixed strategies with payoffs $u_{1}=2, u_{a}=\frac{5}{3}, u_{b}=\frac{7}{3}$.
4. Consider a market with one good and two firms. The firms decide prices p_{1} and p_{2} simultaneous and independently. Given those prices, the amount sold by each company is

$$
\begin{aligned}
& x_{1}\left(p_{1}, p_{2}\right)=54-p_{1}+\frac{p_{2}}{2} \\
& x_{2}\left(p_{1}, p_{2}\right)=54-p_{2}+\frac{p_{1}}{2}
\end{aligned}
$$

Firm 2 has constant marginal cost $c_{2}=6$. Firm 2 does not know the cost of firm 1. Firm 2 thinks that with probability $\frac{1}{2}$ firm 1 has constant marginal cost $c_{l}=4$ and with probability $\frac{1}{2}$ firm 1 has constant marginal cost $c_{h}=8$. Firm 1 knows its costs and the costs of firm 2. This situation is common knowledge for both firms.
(a) (10 points) Write the payoffs of the firms.

Solution: There are two players $N=\{1,2\}$. There are two types of player 2: $T_{2}=$ $\left\{c_{l}, c_{h}\right\}$, where $c_{l}=4$ and $c_{h}=8$. There is one type of player 1: $T_{1}=\{c\}$. The sets of strategies are $S_{2}=\{C C, C D, D C, D D\}, S_{1}=\{A, B\}$. The beliefs of the players are

$$
\begin{aligned}
p_{2}\left(t_{1}=c \mid t_{2}=c_{l}\right) & =p_{2}\left(t_{1}=c \mid t_{2}=c_{l}\right)=1 \\
p_{1}\left(t_{2}=c_{l} \mid t_{1}=t\right) & =p_{1}\left(t_{2}=c_{\mid} t_{1}=t\right)=1 / 2
\end{aligned}
$$

The payoffs are

$$
\begin{aligned}
u_{h}\left(p_{h}, p_{1}\right) & =\left(54-p_{h}+\frac{p_{1}}{1}\right)\left(p_{h}-c_{h}\right) \\
u_{l}\left(p_{l}, p_{1}\right) & =\left(54-1 p_{l}+\frac{p_{1}}{1}\right)\left(p_{l}-c_{l}\right) \\
u_{1} & =\left(p_{1}-6\right)\left(\frac{1}{2}\left(54-p_{1}+\frac{p_{h}}{1}\right)+\frac{1}{2}\left(54-p_{1}+\frac{p_{l}}{1}\right)\right)
\end{aligned}
$$

(b) (20 points) Compute the best reply of each firm. You must compute the best reply of each type of the firms.
Solution: Agent 1, type c_{h}, maximizes $\max _{p_{h}} u_{h}=\left(54-p_{h}+\frac{p_{2}}{2}\right)\left(p_{h}-c_{h}\right)$. The first order condition is

$$
\frac{p_{2}}{2}-2 p_{h}+62=0
$$

Note that the second derivative with respect to p_{h} is

$$
\frac{\partial^{2} u_{h}}{\partial p_{h}^{2}}=-2<0
$$

Hence, the first order condition corresponds to a maximum of u_{h}. The best reply of agent 1, type c_{h}, is

$$
\mathrm{BR}_{h}\left(p_{2}\right)=\frac{p_{2}+124}{4}
$$

Likewise, agent 1, type c_{l}, maximizes $\max _{p_{l}} u_{l}=\left(p_{l}-4\right)\left(\frac{p_{2}}{2}-p_{l}+54\right)$. The first order condition is

$$
\frac{p_{2}}{2}-2 p_{l}+58=0
$$

Note that the second derivative with respect to p_{l} is

$$
\frac{\partial^{2} u_{l}}{\partial p_{l}^{2}}=-2<0
$$

Hence, the first order condition corresponds to a maximum of u_{l}. The best reply of agent 1, type c_{l}, is

$$
\mathrm{BR}_{l}\left(p_{2}\right)=\frac{p_{2}+116}{4}
$$

Finally, agent 2 maximizes

$$
\max _{p_{2}}\left(p_{2}-6\right)\left(\frac{1}{2}\left(54-p_{2}+\frac{p_{h}}{2}\right)+\frac{1}{2}\left(54-p_{2}+\frac{p_{l}}{2}\right)\right)
$$

The first order condition is

$$
\frac{1}{2}\left(54-p_{2}+\frac{p_{h}}{2}\right)+\frac{1}{2}\left(54-p_{2}+\frac{p_{l}}{2}\right)-p_{2}+6=0
$$

The best reply of agent 2 is

$$
\mathrm{BR}_{2}\left(p_{h}, p_{l}\right)=\frac{1}{8}\left(p_{h}+p_{l}+240\right)
$$

(c) (10 points) Compute the Bayes-Nash equillibrium, the quantities sold in this equilibrium and the profits of each firm.
Solution: The NE is the solution to

$$
p_{h}=\frac{p_{2}+124}{4} \quad p_{l}=\frac{p_{2}+116}{4} \quad p_{2}=\frac{1}{8}\left(p_{h}+p_{l}+240\right)
$$

We obtain

$$
p_{h}^{*}=41 \quad p_{l}^{*}=39 \quad p_{2}^{*}=40
$$

the utilities of the agents are

$$
u_{h}^{*}=1089 \quad u_{l}^{*}=1225 \quad u_{2}^{*}=1156
$$

and the quantities sold are

$$
x_{h}^{*}=33 \quad x_{l}^{*}=35 \quad x_{2}^{*}=34
$$

