UNIVERSITY CARLOS III

Master in Economics

Master in Industrial Economics and Markets

Game Theory

FINAL EXAM-January 19th, 2022

NAME:

Problem 1: Consider a Cournot duopoly with two firms which operate in a Market with one good and inverse demand function $P=108-Q$ where Q is the total output in the market. Firm 1 has a constant marginal cost $c_{1}=27$. Firm 2 has a constant marginal cost which can be either $c_{l}=18$ (with probability $1 / 3$) or $c_{h}=36$ (with probability $2 / 3$). Firm 2 knows its cost and the cost of firm 1 . Firm 1 knows its cost but the only information it has about the cost of firm 2 is the above probability.
(a) (5 points.) Describe the situation as a Bayesian game

Solution: There are two players $N=\{1,2\}$, There is one type of player for player $1, T_{1}=\{c\}$ and two types for player $2 T_{2}=\{l, h\}$. The beliefs of the players are

$$
\begin{aligned}
& \mu_{1}\left(t_{2}=l \mid t_{1}=c\right)=1 / 3 \quad \mu_{1}\left(t_{2}=h \mid t_{1}=c\right)=2 / 3 \\
& \mu_{1}\left(t_{1}=c \mid t_{2}=l\right)=\mu_{1}\left(t_{1}=c \mid t_{2}=h\right)=1
\end{aligned}
$$

The strategy sets are $S_{1}=S_{l}=S_{h}=[0,+\infty)$. The utilities of the players are

$$
\begin{aligned}
u_{1}\left(q_{1}, q_{l}, q_{h} ; c\right) & =\frac{1}{3}\left(108-q_{1}-q_{l}\right) q_{1}+\frac{2}{3}\left(108-q_{1}-q_{h}\right) q_{1}-27 q_{1}= \\
u_{l}\left(q_{1}, q_{l}\right) & =u_{2}\left(q_{1}, q_{l}, q_{l} ; l\right)=\left(90-q_{1}-q_{l}\right) q_{l}=90 q_{l}-q_{1} q_{l}-q_{l}^{2} \\
u_{h}\left(q_{1}, q_{h}\right) & =u_{2}\left(q_{1}, q_{l}, q_{h} ; h\right)=\left(72-q_{1}-q_{h}\right) q_{h}=72 q_{h}-q_{1} q_{h}-q_{h}^{2}
\end{aligned}
$$

(b) (10 points.) Compute the best reply of each firm. You must compute the best reply of each type of the firms.

Solution: Agent 2, type h, maximizes $\max _{q_{h}} u_{h}=\left(72-q_{h}-q_{1}\right) q_{h}$. The first order condition is

$$
72-2 q_{h}-q_{1}=0
$$

Note that the second derivative with respect to q_{h} is

$$
\frac{\partial^{2} u_{h}}{\partial q_{h}^{2}}=-2<0
$$

Hence, the first order condition corresponds to a maximum of u_{h}. The best reply of agent 2, type h, is

$$
\mathrm{BR}_{h}\left(q_{1}\right)=\frac{72-q_{1}}{2}
$$

Likewise, agent 2, type l, maximizes $\max _{q_{l}} u_{l}=\left(90-2 q_{l} h-q_{1}\right) q_{l}$. The first order condition is

$$
90-2 q_{l}-q_{1}=0
$$

Note that the second derivative with respect to q_{l} is

$$
\frac{\partial^{2} u_{l}}{\partial q_{l}^{2}}=-2<0
$$

Hence, the first order condition corresponds to a maximum of u_{l}. The best reply of agent 2, type l, is

$$
\mathrm{BR}_{l}\left(q_{1}\right)=\frac{90-q_{1}}{2}
$$

Finally, agent 1 maximizes

$$
\max _{q_{1}} \frac{1}{3}\left(108-q_{1}-q_{l}\right) q_{1}+\frac{2}{3}\left(108-q_{1}-q_{h}\right) q_{1}-27 q_{1}
$$

The first order condition is

$$
81-2 q_{1}-\frac{1}{3} q_{1}-\frac{2}{3} q_{h}=0
$$

The best reply of agent 1 is

$$
\mathrm{BR}_{1}\left(q_{h}, q_{l}\right)=\frac{1}{6}\left(243-2 q_{h}-q_{l}\right)
$$

(c) (10 points.) Compute the Bayes-Nash equillibrium, the quantities sold in this equilibrium and the profits of each firm.

Solution: The NE is the solution to

$$
q_{h}=\frac{72-q_{1}}{2} \quad q_{l}=\frac{90-q_{1}}{2} \quad q_{1}=\frac{1}{6}\left(243-2 q_{h}-q_{l}\right)
$$

We obtain

$$
q_{h}^{*}=22 \quad q_{l}^{*}=31 \quad q_{1}^{*}=28
$$

the utilities of the agents are

$$
u_{h}^{*}=484 \quad u_{l}^{*}=961 \quad u_{1}^{*}=784
$$

(d) (10 points.) Suppose now that it is known that firm 2 has cost $c_{l}=18$. What is the Cournot equilibrium and the profits of the firms? Which firm is better off and which one is worse off with respect to case of asymmetric information?

Solution: The best reply of agent 2, type l, is still

$$
\mathrm{BR}_{l}\left(q_{1}\right)=\frac{90-q_{1}}{2}
$$

But now agent 1 maximizes

$$
\max _{q_{1}}\left(108-q_{1}-q_{l}\right) q_{1}-27 q_{1}
$$

The first order condition is

$$
81-2 q_{1}-q_{h}=0
$$

The best reply of agent 1 is

$$
\mathrm{BR}_{1}\left(q_{h}, q_{l}\right)=\frac{81-q_{2}}{2}
$$

The NE is the solution to

$$
q_{l}=\frac{90-q_{1}}{2} \quad q_{1}=\frac{81-q_{2}}{2}
$$

We obtain

$$
q_{l}^{*}=33 \quad q_{1}^{*}=24
$$

the utilities of the agents are

$$
u_{l}^{*}=1089 \quad u_{1}^{*}=576
$$

Firm 2 type l is better off in comparison with the asymmetric situation. Firm 1 is worse off.
(e) (10 points.) Suppose now that it is known that firm 2 has cost $c_{h}=36$. What is the Cournot equilibrium and the profits of the firms? Which firm is better off and which one is worse off with respect to case of asymmetric information?

Solution: The best reply of agent 2, type h, is

$$
\mathrm{BR}_{h}\left(q_{1}\right)=\frac{72-q_{1}}{2}
$$

And now agent 1 maximizes

$$
\max _{q_{1}}\left(108-q_{1}-q_{h}\right) q_{1}-27 q_{1}
$$

The first order condition is

$$
81-2 q_{1}-q_{h}=0
$$

The best reply of agent 1 is

$$
\mathrm{BR}_{1}\left(q_{h}, q_{h}\right)=\frac{81-q_{2}}{2}
$$

The NE is the solution to

$$
q_{h}=\frac{72-q_{1}}{2} \quad q_{1}=\frac{81-q_{2}}{2}
$$

We obtain

$$
q_{h}^{*}=21 \quad q_{1}^{*}=30
$$

the utilities of the agents are

$$
u_{h}^{*}=441 \quad u_{1}^{*}=900
$$

Firm 2 type l is worse off in comparison with the asymmetric situation. Firm 1 is better off.
(f) (10 points.) Suppose now that firm 1 does not know the cost of firm 2. But, firm 1 can hire a research institute that will publish the cost of firm 2. How much would firm 1 be willing to pay to make that information public?

Solution: Without the information the profit of firm 1 is 784 . If it is common knowledge that firm 2 is of type l, the profit of firm 1 would be 576. If it is common knowledge that firm 2 is of type h, the profit of firm 1 would be 900. Thus, the expected value of revealing the information is

$$
\frac{1}{3} \times 576+\frac{2}{3} \times 900=792
$$

Therefore, the maximum amount firm 1 would be willing to pay is $792-784=8$.

Problem 2: Consider the situation in which player 1 knows what is the game played (a or b below). But, player 2 only knows that a is played with probability $1 / 2$ and b is played with probability $1 / 2$.

Player 2
Player 2

		X	
	Y		
Player	C	C	Y
		18,8	0,0
		0,0	12,12

$$
(a, 1 / 2)
$$

Player 1

(10 points.) Find the Bayesian equilibria in pure strategies and the payoffs of the players in those equilibria. Solution: Note that $\mathrm{BR}_{1}(X)=C C$ and

$$
\begin{aligned}
& u_{2}(C C, X)=4 \\
& u_{2}(C C, Y)=6
\end{aligned}
$$

Hence, $\mathrm{BR}_{2}(C C)=Y$. We conclude that there is no pure strategy $N E$ in which player 2 plays X. On the other hand, $\mathrm{BR}_{1}(Y)=D D$ and

$$
\begin{aligned}
u_{2}(D D, X) & =4 \\
u_{2}(D D, Y) & =6
\end{aligned}
$$

Hence, $\mathrm{BR}_{2}(D D)=Y$. We conclude that $(D D, Y)$ is a $B N E$ in pure strategies. The payoffs are $u_{a}(D D, Y)=12$, $u_{b}(D D, Y)=12 . u_{2}(D D, Y)=6$.
(20 points.) Find the Bayesian equilibria in mixed strategies and the payoffs of the players in those equilibria. Solution: Let us look for a BNE in mixed strategies of the form

$$
\begin{aligned}
\sigma_{a} & =x C+(1-x) D, \quad 0 \leq x \leq 1 \\
\sigma_{b} & =y C+(1-y) D \quad 0 \leq y \leq 1 \\
\sigma_{2} & =z X+(1-z) Y \quad 0 \leq z \leq 1
\end{aligned}
$$

Suppose first that $0<x<1$. Then $u_{a}\left(C, \sigma_{2}\right)=u_{a}\left(D, \sigma_{2}\right)$, Since,

$$
\begin{aligned}
u_{a}\left(C, \sigma_{2}\right) & =18 z \\
u_{a}\left(D, \sigma_{2}\right) & =12-12 z
\end{aligned}
$$

we must have $z=2 / 5$. Given this value of z, we have

$$
\begin{aligned}
& u_{b}\left(C, \sigma_{2}\right)=18 z=\frac{36}{5} \\
& u_{b}\left(D, \sigma_{2}\right)=12-12 z=\frac{36}{5}
\end{aligned}
$$

and player b is also indifferent between C and D for $z=2 / 5$. Now, for $z=2 / 5$, player 2 must be indifferent between X and Y.

$$
\begin{aligned}
& u_{2}\left(\sigma_{a}, \sigma_{b} ; X\right)=\frac{1}{2} 18 x+\frac{1}{2} 8(1-y)=4+4 x-4 y \\
& u_{2}\left(\sigma_{a}, \sigma_{b} ; Y\right)=\frac{1}{2} 18(1-x)+\frac{1}{2} 12 y=6-6 x+6 y
\end{aligned}
$$

equating $4+4 x-4 y=6-6 x+6 y$ we obtain $5 x-5 y=1$. Since, $x, y \geq 0$ we obtain a family of BNE

$$
\left\{\left(\left(x C+(1-x) D,\left(x-\frac{1}{5}\right) C+\left(\frac{6}{5}-x\right) D\right), \frac{2}{5} X+\frac{3}{5} Y\right): \frac{1}{5} \leq x \leq 1\right\}
$$

with payoffs

$$
u_{a}=u_{b}=\frac{36}{5}, \quad u_{2}=\frac{24}{5}
$$

Problem 3:

Consider the following game in extensive form

1. (5 points.) What are the sub-games of the above game? It is enough to write the node at which each sub-game starts.

Solution: There are three sub-games: The whole game and the sub-games that start at the nodes 1.1 and 1.2.
2. (5 points.) Write the normal form of the sub-game that starts at at node 1.1. Find the Nash equilibria in pure strategies of this sub-game.
Solution: The normal form of the sub-game that starts at at node 1.1 is,

	U	V
A	0,1	$-2,0$
B	2,2	10,1

There is a unique NE in pure strategies: (B, U) with payoffs $(2,2)$.
3. (5 points.) Write the normal form of the sub-game that starts at at node 1.2. Find the Nash equilibria in pure strategies of this sub-game.
Solution: The normal form of the sub-game that starts at at node 1.2 is,

	X	Y
C	3,4	1,2
D	1,5	5,6

There are two NE in pure strategies: (C, X) with payoffs $(3,4)$ and (D, Y) with payoffs $(5,6)$.
4. (10 points.) Find the pure strategy sub-game perfect Nash equilibria of the complete game.

Solution: Let us write an strategy as (1, (1.1,2.1), (1.2, 2.2)). At node 1, player 1 chooses Z and W anticipating the subsequent NE which gives him the highest payoff. Thus, the sub-game perfect Nash equilibria are:
(a) $(W,(B, U),(C, X))$, with payoffs $(3,4)$.
(b) $(W,(B, U),(D, Y)))$, with payoffs $(5,6)$.

Problem 4: Consider the following stage game

	C	D
C	10,10	0,15
D	15,0	5,5

(a) (5 points.) Find all the NE of the above game.

Solution: The strategy C is strictly dominated for player 1. Once we eliminate this stragegy, C is strictly dominated for player 2. Hence, the unique $N E$ is (D, D) with payoff $u_{1}=u_{2}=5$.

Consider now the repeated game which consists in playing the above stage game infinitely many times with discount factor δ.
(b) (5 points.) Can you find a subgame perfect Nash Equilibrium for every $0<\delta<1$?

Solution: The strategy (D, D) is a NE of the stage game. Thus, playing (D, D) in every period is a SPNE.
(c) (10 points.) Describe the trigger strategy.
(d) (15 points.) For what values of δ does the trigger strategy constitute a subgame perfect Nash equilibrium? You must justify why the trigger strategy is a SPNE for those values of δ.

Solution:

If players follow the trigger strategy their stream of payoffs is

$$
10+10 \delta+10 \delta^{2}+\cdots=\frac{10}{1-\delta}
$$

If one player deviates at the first period his stream of payoffs will be

$$
15+5 \delta+5 \delta^{2}+\cdots=15+\frac{5 \delta}{1-\delta}
$$

The trigger strategy is a NE of the repeated game iff

$$
\frac{10}{1-\delta} \geq 15+\frac{5 \delta}{1-\delta}
$$

that is iff $\delta \geq \frac{1}{2}$. The standard argument shows it is a SPNE.
(d) Suppose now that $\delta=3 / 4$. Let k pe a positive integer. Consider the following 'soft' trigger stragegy:

- At $t=1$ play (C, C).
- If $2 \leq t \leq k$ play (C, C) if (C, C) was played at $t-1, t-2, \ldots, 1$. Play (D, D) otherwise.
- If $t>k$ play (C, C) if (C, C) was played at $t-1, t-2, \ldots, t-k$. Play (D, D) otherwise.

That is, if one player deviates from (C, C) he is punished for k periods with (D, D) and then we go back to (C, C). What is the smallest value of k for which the above strategy is a sub-game perfect Nash equilibrium?
(15 points.) Solution: If players follow the 'soft' trigger strategy their stream of payoffs is

$$
u_{t}=10+10 \delta+10 \delta^{2}+\cdots=\frac{10}{1-\delta}
$$

If one player deviates at the first period his stream of payoffs will be

$$
u_{d}=15+5 \delta+5 \delta^{2}+\cdots+5 \delta^{k}+10 \delta^{k+1}+10 \delta^{k+2}+\cdots
$$

The 'soft' trigger strategy is a NE of the repeated game iff

$$
u_{t}-u_{d}=-5+5 \delta+5 \delta^{2}+\cdots+5 \delta^{k} \geq 0
$$

Let

$$
x=5 \delta+5 \delta^{2}+\cdots+5 \delta^{k}
$$

Then

$$
\delta x=5 \delta^{2}+5 \delta^{3}+\cdots+5 \delta^{k+1}
$$

So,

$$
(1-\delta) x=5 \delta-5 \delta^{k+1}
$$

Hence,

$$
x=\frac{5 \delta-5 \delta^{k+1}}{1-\delta}
$$

That is,

$$
5 \delta+5 \delta^{2}+\cdots+5 \delta^{k}=5 \frac{\delta-\delta^{k+1}}{1-\delta}
$$

Therefore, the 'soft' trigger strategy is a NE of the repeated game iff

$$
\frac{\delta-\delta^{k+1}}{1-\delta} \geq 1
$$

That is, if

$$
\delta-\delta^{k+1} \geq 1-\delta
$$

or

$$
2 \delta \geq 1+\delta^{k+1}
$$

with $\delta=\frac{3}{4}$ the above inequality becomes

$$
1+\left(\frac{3}{4}\right)^{k+1} \leq \frac{3}{2}
$$

For $k=1$ we have

$$
1+\left(\frac{3}{4}\right)^{2}=\frac{25}{16}>\frac{3}{2}
$$

For $k=2$ we have

$$
1+\left(\frac{3}{4}\right)^{3}=\frac{91}{64}<\frac{3}{2}
$$

So, it is enough to take $k=2$.

