UNIVERSITY CARLOS III

FINAL EXAM-January 15th, 2020

NAME:

Problem 1:

Consider a market with one good and two firms. The firms decide prices p_{1} and p_{2} independently. Given those prices, the amount sold by each company is

$$
\begin{aligned}
& x_{1}\left(p_{1}, p_{2}\right)=a-2 p_{1}+p_{2} \\
& x_{2}\left(p_{1}, p_{2}\right)=a-2 p_{2}+p_{1}
\end{aligned}
$$

where $a \in\{48,96\}$ is a parameter which is only known precisely by firm 1 . Firm 2 thinks that, with probability $1 / 2$, $a=48$ and, with probability $1 / 2, a=96$. This situation is common knowledge for both firms. Assume that the cost of production is 0 for both firms.
(a) (5 points.) Describe the situation as a Bayesian game

Solution: There are two players $N=\{1,2\}$. There are two types of player 1: $T_{1}=\left\{c_{l}, c_{h}\right\}$, where $c_{l}=4$ and $c_{h}=8$. There is one type of player 2: $T_{2}=\{c\}$. The sets of strategies are $S_{1}=S_{2}=S_{c_{l}}=S_{c_{h}}=[0, \infty)$. The beliefs of the players are

$$
\begin{aligned}
p_{1}\left(t_{2}=c \mid t_{1}=c_{l}\right) & =p_{1}\left(t_{2}=c \mid t_{1}=c_{l}\right)=1 \\
p_{2}\left(t_{1}=c_{l} \mid t_{2}=t\right) & =p_{2}\left(t_{1}=c_{\mid} t_{2}=t\right)=1 / 2
\end{aligned}
$$

The payoffs are

$$
\begin{aligned}
u_{h}\left(p_{h}, p_{2}\right) & =\left(54-p_{h}+\frac{p_{2}}{2}\right)\left(p_{h}-c_{h}\right) \\
u_{l}\left(p_{l}, p_{2}\right) & =\left(54-2 p_{l}+\frac{p_{2}}{2}\right)\left(p_{l}-c_{l}\right) \\
u_{2} & =\left(p_{2}-6\right)\left(\frac{1}{2}\left(54-p_{2}+\frac{p_{h}}{2}\right)+\frac{1}{2}\left(54-p_{2}+\frac{p_{l}}{2}\right)\right)
\end{aligned}
$$

(b) (10 points.) Compute the best reply of each firm. You must compute the best reply of each type of the firms.

Solution: Agent 1, type a_{h}, maximizes $\max _{p_{h}} u_{h}=\left(96-2 p_{h}+p_{2}\right) p_{h}$. The first order condition is

$$
96-4 p_{h}+p_{2}=0 .
$$

Note that the second derivative with respect to p_{h} is

$$
\frac{\partial^{2} u_{h}}{\partial p_{h}^{2}}=-4<0
$$

Hence, the first order condition corresponds to a maximum of u_{h}. The best reply of agent 1 , type a_{h}, is

$$
\mathrm{BR}_{h}\left(p_{2}\right)=\frac{96+p_{2}}{4}
$$

Likewise, agent 1, type a_{l}, maximizes $\max _{p_{l}} u_{l}=\left(96-2 p_{l} h+p_{2}\right) p_{l}$. The first order condition is

$$
48-4 p_{l}+p_{2}=0
$$

Note that the second derivative with respect to p_{l} is

$$
\frac{\partial^{2} u_{l}}{\partial p_{l}^{2}}=-4<0
$$

Hence, the first order condition corresponds to a maximum of u_{l}. The best reply of agent 1 , type a_{l}, is

$$
\mathrm{BR}_{l}\left(p_{2}\right)=\frac{48+p_{2}}{4}
$$

Finally, agent 2 maximizes

$$
\max _{p_{2}} \frac{1}{2}\left(96-2 p_{2}+p_{h}\right) p_{2}+\frac{1}{2}\left(48-2 p_{2}+p_{l}\right) p_{2}
$$

The first order condition is

$$
\frac{1}{2}\left(p_{h}-2 p_{2}+48\right)+\frac{1}{2}\left(p_{l}-2 p_{2}+96\right)-2 p_{2}=0
$$

The best reply of agent 2 is

$$
\mathrm{BR}_{2}\left(p_{h}, p_{l}\right)=\frac{144+p_{h}+p_{l}}{8}
$$

(c) (10 points.) Compute the Bayes-Nash equillibrium, the quantities sold in this equilibrium and the profits of each firm.

Solution: The NE is the solution to

$$
p_{h}=\frac{96+p_{2}}{4} \quad p_{l}=\frac{48+p_{2}}{4} \quad p_{2}=\frac{144+p_{h}+p_{l}}{8}
$$

We obtain

$$
p_{h}^{*}=30 \quad p_{l}^{*}=18 \quad p_{2}^{*}=24
$$

the utilities of the agents are

$$
u_{h}^{*}=1800 \quad u_{l}^{*}=648 \quad u_{2}^{*}=1152
$$

and the quantities sold are

$$
x_{h}^{*}=60 \quad x_{l}^{*}=36 \quad x_{2}^{*}=48
$$

Problem 2: Two firms operate in a market: the incumbent (player 1) who has to decide wether to build (B) a plant or not (N) and a potential entrant (player 2) who has to decide wether to enter (E) the market or not (N). Player 1 knows the cost of building the plant, but player 2 does not know. Player 2 only knows that the cost is high with probability $0<p<1$ and low with probability $1-p$. Both firms have take their decision simultaneously. The profits of the firms are given in the following tables.
(15 points.) Find the Bayesian equilibria in pure strategies and the payoffs of the players in those equilibria. Solution: Note that $\mathrm{BR}_{1}(E)=N N$ and

$$
\begin{aligned}
& u_{2}(N N, E)=2 \\
& u_{2}(N N, N)=0
\end{aligned}
$$

Hence $\mathrm{BR}_{2}(N N)=E$. We conclude that for any $0<p<1$,

$$
(N N, E) \quad \text { is BNE with payoffs } \quad u_{1}(N N, E \mid h)=4, u_{1}(N N, E \mid l)=4, u_{2}(N N, E)=2
$$

On the other hand, $\mathrm{BR}_{1}(N)=N B$ and

$$
\begin{aligned}
u_{2}(N B, E) & =2 p-2(1-p)=4 p-2 \\
u_{2}(N B, N) & =0
\end{aligned}
$$

We consider three cases:

1. If $0 \leq p<1 / 2$, then, $\mathrm{BR}_{1}(N B)=N$ and
$(N B, N) \quad$ is also a BNE with payoffs $\quad u_{1}(N B, N \mid h)=6, u_{1}(N B, N \mid l)=7, u_{2}(N B, N)=0$
2. If $p=1 / 2$, then, $\mathrm{BR}_{1}(N B)=\{E, N\}$ and again
$(N B, N) \quad$ is also a BNE with payoffs $\quad u_{1}(N B, N \mid h)=6, u_{1}(N B, N \mid l)=7, u_{2}(N B, N)=0$
3. If $p>1 / 2$, then, $\mathrm{BR}_{1}(N B)=E$. We conclude that, for these values of p, there is no $B N E$ in pure strategies in which player 1 plays $N B$.
(20 points.) Find the Bayesian equilibria in mixed strategies and the payoffs of the players in those equilibria.
Solution: Note that, for player 1 with high cost, strategy B is dominated by strategy N. So, in no NE will this player use strategy B. Let us look for a BNE in mixed strategies of the form

$$
\begin{aligned}
\sigma_{h} & =N \\
\sigma_{l} & =x B+(1-x) N, \quad 0<x<1 \\
\sigma_{2} & =y E+(1-y) N \quad 0<x<1
\end{aligned}
$$

The expected utilities of player l are

$$
\begin{aligned}
& u_{l}\left(B, \sigma_{2}\right)=3 y+7(1-y)=7-4 y \\
& u_{l}\left(N, \sigma_{2}\right)=4 y+6(1-y)=6-2 y
\end{aligned}
$$

We must have that $7-4 y=6-2 y$. That is, $y=1 / 2$. The expected utilities of player 2 are

$$
\begin{aligned}
u_{2}\left(\sigma_{h}, \sigma_{l} ; E\right) & =2 p+(1-p)(-2 x+2(1-x))=2(1-2 x(1-p)) \\
u_{2}\left(\sigma_{h}, \sigma_{l} ; N\right) & =0
\end{aligned}
$$

We must have that $1-2 x(1-p)=0$. Hence,

$$
x=\frac{1}{2(1-p)}
$$

Since, $0<x<1$ we must have that $0<\frac{1}{2(1-p)}<1$. That is, for

$$
0 \leq p \leq \frac{1}{2}
$$

we have the BNE

$$
\left(\left(N, \frac{1}{2(1-p)} B+\left(1-\frac{1}{2(1-p)}\right) N\right), \frac{1}{2} E+\frac{1}{2} N\right)
$$

with payoffs

$$
u_{h}=\frac{1}{2} \times 4+\frac{1}{2} \times 6=5, \quad u_{l}=5 \quad u_{2}=0
$$

Finally, recall from the previous part, that for $p=1 / 2$ we have

$$
u_{2}(N B, E)=u_{2}(N B, N)=0
$$

and we also have that

$$
u_{l}\left(B, \sigma_{2}\right)=7-4 y \geq u_{l}\left(N, \sigma_{2}\right)=6-2 y
$$

iff $0 \leq y \leq \frac{1}{2}$. Thus, for $p=1 / 2$, we we have the $B N E$

$$
(N B, y E+(1-y) N), \quad 0 \leq y \leq \frac{1}{2}
$$

with payoffs

$$
u_{h}=6-2 y, \quad u_{l}=7-4 y \quad u_{2}=0
$$

Problem 3:

Consider the following game in extensive form

1. (5 points.) What are the sub-games of the above game? It is enough to write the node at which each sub-game starts.
Solution: There are three sub-games: The whole game and the sub-games that start at the nodes 1.1 and 1.2.
2. (5 points.) Write the normal form of the sub-game that starts at at node 1.1. Find the Nash equilibria in pure strategies of this sub-game.
Solution: The normal form of the sub-game that starts at at node 1.1 is,

	U	V
A	0,1	2,2
B	2,3	1,1

There are two $N E$ in pure strategies: (A, V) with payoffs $(2,2)$ and (B, U) with payoffs $(2,3)$.
3. (5 points.) Write the normal form of the sub-game that starts at at node 1.2. Find the Nash equilibria in pure strategies of this sub-game.
Solution: The normal form of the sub-game that starts at at node 1.2 is,

	X	Y
C	1,2	5,4
D	3,5	1,6

There is one NE in pure strategies: (C, Y) with payoffs $(5,4)$.
4. (10 points.) Find the pure strategy sub-game perfect Nash equilibria of the complete game.

Solution: Let us write an strategy as $(1,(1.1,2.1),(1.2,2.2)$. At node 1 , player 1 chooses Z and W anticipating the subsequent NE which gives him the highest payoff. Thus, the sub-game perfect Nash equilibria are:
(a) $(W, A, C),(V, Y))$, with payoffs $(5,4)$.
(b) $(W, B, C),(U, Y)))$, with payoffs $(5,4)$.

Problem 4: Consider the following stage game

	C	D
C	6,6	3,3
D	8,3	4,4

(a) (5 points.) Find all the NE of the above game.

Solution: The strategy C is strictly dominated for player 1. Once we eliminate this stragegy, D is strictly dominated for player 2. Hence, the unique $N E$ is (D, D) with payoff $u_{1}=u_{2}=4$.
(b) (5 points.) Consider the repeated game which consists in playing the above stage game 57 many times. What are the subgame perfect Nash Equilibria?

Solution: The strategy (D, D) is the unique $N E$ of the stage game. Thus, playing (D, D) in every period is the unique SPNE.

Consider now the repeated game which consists in playing the above stage game infinitely many times with discount factor δ.
(c) (5 points.) Can you find a subgame perfect Nash Equilibrium for every $0<\delta<1$?

Solution: The strategy (D, D) is the unique NE of the stage game. Thus, playing (D, D) in every period is the unique SPNE.
(c) (10 points.) Describe the trigger strategy.
(c) (15 points.) For what values of δ does the trigger strategy constitute a subgame perfect Nash equilibrium? You must justify why the trigger strategy is a SPNE for those values of δ.

Solution:

If players follow the trigger strategy their stream of payoffs is

$$
4+4 \delta+4 \delta^{2}+\cdots=\frac{4}{1-\delta}
$$

If one player deviates at the first period his stream of payoffs will be

$$
6+2 \delta+2 \delta^{2}+\cdots=6+\frac{2 \delta}{1-\delta}
$$

The trigger strategy is a NE of the repeated game iff

$$
\frac{4}{1-\delta} \geq 6+\frac{2 \delta}{1-\delta}
$$

that is iff $\delta \geq \frac{1}{2}$. The standard argument shows it is a SPNE.

