UNIVERSITY CARLOS III

Game Theory
FINAL EXAM-January 23rd, 2019

NAME:

Problem 1: Two graduate students share an apartment. They have to spend time cleaning the apartment. If each of them spends x_{1}, x_{2} hours cleaning, their utilities are

$$
\begin{aligned}
& u_{1}\left(x_{1}, x_{2}\right)=\left(20+x_{2}\right) x_{1}-3 x_{1}^{2} \\
& u_{2}\left(x_{1}, x_{2}\right)=\left(20+x_{1}\right) x_{2}-3 x_{2}^{2}
\end{aligned}
$$

Note that the time spent in cleaning increases the utility of both tenants. That is, cleaning has a positive externality. On the other hand, the time spent cleaning imposes a personal cost.
(a) (5 points.) Suppose first that they consider only the possibility of cleaning the apartment on a single given day. If both students decide independently the time spent cleaning, how much time will they devote to cleaning? What are their utilities?

Solution:

Agent 1 maximizes $\max _{x_{1}} u_{1}=\left(20+x_{2}\right) x_{1}-3 x_{1}^{2}$. The first order condition is

$$
\frac{\partial u_{1}}{\partial x_{1}}=20+x_{2}-6 x_{1}=0
$$

Note that the second derivative with respect to x_{1} is

$$
\frac{\partial^{2} u_{1}}{\partial x_{1}^{2}}=-6<0
$$

Hence, the first order condition corresponds to a maximum of u_{1}. The best reply of agent 1 is

$$
\mathrm{BR}_{1}\left(x_{2}\right)=\frac{20+x_{2}}{6}
$$

Likewise, agent 2 maximizes $\max _{x_{2}}\left(20+x_{1}\right) x_{2}-3 x_{2}^{2}$. The best reply of agent 2 is

$$
\mathrm{BR}_{2}\left(x_{1}\right)=\frac{20+x_{1}}{6}
$$

The NE is the solution to

$$
q_{1}=\frac{20+x_{2}}{6}, \quad q_{2}=\frac{20+x_{1}}{6}
$$

The NE is $x_{1}^{*}=x_{2}^{*}=4$. The utilities of the agents are $u_{1}^{*}=u_{2}^{*}=48$.
(b) (5 points.) Suppose now they could make a joint agreement on how much time each should spend on cleaning. Which is the amount of time each should spend on cleaning that maximizes their joint welfare?

Solution:

Now, the agents maximize

$$
\max _{x_{1}, x_{2}}\left(20+x_{2}\right) x_{1}-3 x_{1}^{2}+\left(20+x_{1}\right) x_{2}-3 x_{2}^{2}
$$

The solution is $\bar{x}_{1}=\bar{x}_{2}=5$. The utilities of the agents are $\bar{u}_{1}^{*}=\bar{u}_{2}^{*}=50$.
(c) (5 points.) Would they have incentives to deviate from the agreement reached in part (2)?

Solution:

The agreement in part (b) is not a NE. For example,

$$
\mathrm{BR}_{1}(5)=\frac{25}{6}=4.16667 \neq \bar{x}_{1}
$$

with utility

$$
u_{1}\left(\frac{25}{6}, 5\right)=\frac{625}{12}=52.0833
$$

Thus, the agents have incentives to deviate.
(d) (10 points.) Suppose now that they have to clean the apartment every day. The discount factor is $\delta=2 / 3$. Can you find a SPNE of the infinitely repeated game with the above game as the stage game?

Solution:

Let us consider the following (trigger strategies) strategy profile T. Firm $i=1,2$ choose the following x_{i},

- At $t=1$, choose $\bar{x}_{i}=5$;
- At $t>1$, if

$$
\bar{x}_{1}=\bar{x}_{2}=5
$$

was chosen at $t=1, \ldots, t-1$ then chose $\bar{x}_{i}=5$. Otherwise, choose the Nash equilibrium

$$
x_{i}^{*}=4
$$

The utility obtained by any player under the strategy profile T is

$$
u_{T}=50+50 \delta+50 \delta^{2}+\cdots=\frac{50}{1-\delta}=150
$$

If an agent $i=1,2$ deviates in stage $t=1$, then its best option is to deviate to

$$
\mathrm{BR}_{i}(5)=\frac{25}{6}
$$

with a utility of

$$
\frac{625}{12}
$$

Thus, if agent $i=1,2$ deviates in stage $t=1$, the maximum payoff he can obtain is

$$
u_{d}=\frac{625}{12}+48 \delta+48 \delta^{2} \cdots=\frac{625}{12}+\frac{48 \delta}{1-\delta}=\frac{1777}{12}=148.083
$$

Thus, the strategy profile T is a NE of the repeated game. We show next that it is also a NE in every subgame. There are two types of subgames starting at a stage t.

- Subgames in which at every stage $1,2, \ldots, t-1$ the strategy profile $(5,5)$ was played. Then, the situation in the subgame that starts at this node is exactly like in the original game, except that the payoffs are multiplied by δ^{t-1}. The above argument shows that the strategy profile T is also a NE of that subgame.
- Subgames in which at some stage $1,2, \ldots, t-1$ the strategy profile $(5,5)$ was not played. In these subgames the strategy profile T prescribes that $(4,4)$, a NE of the stage game, is played in every stage. Therefore, it is a SPNE of this subgame.

Player 2

	C		D
Player 1	A	6,4	0,8
		0,8	6,4

(i)

Player 2

	C		C
		D	
Player 1	$A 2,8$	0,4	
	B	24,16	12,12

(ii)

Therefore, the trigger strategy constitutes a SPNE.

Problem 2: Consider the situation in which player 1 knows what game is played ((i) or (ii) below). But player 2 only knows that A is played with probability $1 / 2$ and B is played with probability $1 / 2$.
(25 points.) Find the Bayesian equilibria in pure and mixed strategies.

Solution:

C				
		q	$1-q$	
$A A$	$x z$	9,6	0,6	$9 q$
$A B$	$x(1-z)$	15,10	6,10	$6+9 q$
$B A$	$(1-x) z$	6,8	3,4	$3(1+q)$
$B B$	$(1-x)(1-z)$	12,12	9,8	$3(3+q)$
		$2(6-x-2 z)$	$2(4+x-2 z)$	

Since $9 q<6+9 q$ and $3(1+q)<3(3+q)$ for every $q \in[0,1]$ we must have $x z=(1-x) z=0$. Hence, $z=0$ and we obtain

C				
	D			
$A B$		q	$1-q$	
A	x	15,10	6,10	$6+9 q$
$B B$	$1-x$	2,12	9,8	$3(3+q)$
		$2(6-x)$	$2(4+x)$	

We obtain

$$
\mathrm{BR}_{1}(q)= \begin{cases}B B \quad(x=0) & \text { if } q<\frac{1}{2} \\ \{A B, B B\} \quad(0 \leq x \leq 1) & \text { if } q=\frac{1}{2} \\ A B \quad(x=1) & \text { if } q>\frac{1}{2}\end{cases}
$$

and

$$
\mathrm{BR}_{2}(x, z)= \begin{cases}C \quad(q=1) & \text { if } 0 \leq x<1 \\ \{C, D\} \quad(0 \leq q \leq 1) & \text { if } x=1\end{cases}
$$

We get the following BNE

- $(A B, C)$, with payofs $u_{1}=15, u_{2}=10$.
- $(A B, q C+(1-q) D), \frac{1}{2} \leq q \leq 1$ with payofs $u_{1}=\frac{21}{2}, u_{2}=10$.

Problem 3:

Consider the following game in extensive form

1. (5 points.) What are the sub-games of the above game? It is enough to write the node at which each sub-game starts.

Solution: There are three sub-games: The whole game and the sub-games that start at the nodes 1.1 and 1.2.
2. (5 points.) Write the normal form of the sub-game that starts at at node 1.1. Find the Nash equilibria in pure strategies of this sub-game.
Solution: The normal form of the sub-game that starts at at node 1.1 is,

	U	V
A	$-2,0$	4,2
B	0,6	$-2,0$

There are two $N E$ in pure strategies: (A, V) with payoffs $(4,2)$ and (B, U) with payoffs $(0,6)$.
3. (5 points.) Write the normal form of the sub-game that starts at at node 1.2. Find the Nash equilibria in pure strategies of this sub-game.
Solution: The normal form of the sub-game that starts at at node 1.2 is,

	X	Y
C	0,0	6,2
D	2,6	0,0

There are two $N E:(C, Y)$ with payoffs $(6,2)$ and (D, X) with payoffs $(2,6)$.
4. (10 points.) Find the pure strategy sub-game perfect Nash equilibria of the complete game.

Solution: Let us write an strategy as (1, (1.1,2.1), (1.2, 2.2)). At node 1, player 1 chooses Z and W anticipating the subsequent NE which gives him the highest payoff. Thus, the sub-game perfect Nash equilibria are:
(a) $(W,(A, V),(C, Y))$, with payoffs $(6,2)$.
(b) $(Z,(A, V),(D, X))$, with payoffs $(4,2)$.
(c) $(W,(B, U),(C, Y))$, with payoffs $(6,2)$.
(d) $(W,(B, U),(D, X))$, with payoffs $(2,6)$.

Problem 4: Consider the following stage game

	C	D
C	4,4	0,6
D	6,0	2,2

And consider the repeated game which consists in playing the above stage game infinitely many times with discount factor δ.
(a) (5 points.) Can you find a subgame perfect Nash Equilibrium for every $0<\delta<1$?

Solution: The strategy (D, D) is a $N E$ of the stage game. Thus, playing (D, D) in every period is a SPNE.
(b) (10 points.) Describe the trigger strategy. For what values of δ does the trigger strategy constitute a subgame perfect Nash equilibrium?

Solution:

If players follow the trigger strategy their stream of payoffs is

$$
4+4 \delta+4 \delta^{2}+\cdots=\frac{4}{1-\delta}
$$

If one player deviates at the first period his stream of payoffs will be

$$
6+2 \delta+2 \delta^{2}+\cdots=6+\frac{2 \delta}{1-\delta}
$$

The trigger strategy is a NE of the repeated game iff

$$
\frac{4}{1-\delta} \geq 6+\frac{2 \delta}{1-\delta}
$$

that is iff $\delta \geq \frac{1}{2}$. The standard argument shows it is a SPNE.
(c) (5 points.) Let now $\delta=\frac{3}{4}$. And consider the tit-for-tat: strategy profile: Player $i=1,2$ at

- $t=1$ plays C.
- $t>1$ plays whatever the other played at $t-1$.

Is the tit-for-tat strategy profile a subgame perfect Nash equilibrium of the repeated game? Why or Why not? (Hint: consider those subgames which start at a node t in which in the previous period (D, C) was played.)

Solution:

Consider a subgame which starts at a node t in which in the previous period (D, C) was played. If players follow the tit-for-tat strategy profile in that subgame the sequence of plays at every stage is

$$
(C, D),(D, C),(C, D),(D, C),(C, D),(D, C), \ldots
$$

with payoffs

$$
(0,6),(6,0),(0,6),(6,0),(0,6),(6,0), \ldots
$$

that is

$$
\begin{gathered}
u_{1}=0+6 \delta+0 \delta^{2}+6 \delta^{3}+\cdots=\frac{6 \delta}{1-\delta^{2}} \\
u_{2}=6+0 \delta+6 \delta^{2}+0 \delta^{3}+\cdots=\frac{6}{1-\delta^{2}}=\frac{6}{1-\left(\frac{3}{4}\right)^{2}}=\frac{96}{7}=13.7143
\end{gathered}
$$

Suppose player 2 deviates and plays C in that period. The sequence of plays is

$$
(C, C),(C, C),(C, C),(C, C),(C, C),(C, C), \ldots
$$

The payoff of player 2 is

$$
\bar{u}_{2}=4+4 \delta+4 \delta^{2}+4 \delta^{3}+\cdots=\frac{4}{1-\delta}=\frac{4}{1-\frac{3}{4}}=16
$$

Hence, player 2 has incentives to deviate. We conclude that tit-for-tat is not a SPNE
(d) (5 points.) Let again $\delta=\frac{3}{4}$ Is the tit-for-tat strategy profile described above a Nash equilibrium of the repeated game? Why or Why not?

Solution: Let r be the tit-for-tat strategy. Let s be a best reply of player 1 to r. Note that if, in the path determined by s and r, we reach a node in which player 2 plays C, then, in the subgame that starts at that node, s continues to be a best reply of player 1 against r.

Let $x=u_{1}(s, r)$. Note that $u_{1}(r, r)=\frac{1}{1-\delta}=16$. So $x \geq 16$. We will show $x=16$. Suppose to the contrary that $x>16$.

For simplicity, we assume that, in the strategy s, player 1 plays D for the first time in period 1.That is, we ignore all the initial periods in which r and s coincide.

Assume now that player 1 plays r and player 2 plays tit-for-tat. Thus, player 2 plays C in period 1 and D in period 2. There are two possible continuations for player 1 in period 2: C and D. That is,
case $1: \quad(D, C),(D, D),(*, D), \cdots$
and

$$
\text { case 2: } \quad(D, C),(C, D),(*, C), \cdots
$$

Let us consider case 1. If player 1 plays D indefinitely the payoff for player 1 is

$$
x=u_{1}(s, r)=6+2 \delta+2 \delta^{2}+\cdots=6+\frac{2 \delta}{1-\delta}=12<16
$$

This is not possible. Hence, player 1 switches to C after, say, k periods. That is,

$$
\text { case 1: } \quad(D, C), \underbrace{(D, D),(D, D), \cdots,(D, D)}_{k \text { times }},(C, D),(*, C)
$$

Note that now case 2 is obtained from case 1 when $k=0$.) The payoff for player 1 is

$$
x=u_{1}(s, r)=6+2 \delta+2 \delta^{2}+\cdots+2 \delta^{k}+0 \times \delta^{k+1}+\delta^{k+2} x
$$

Since $x>2$, the optimal k is $k=0$. And we have

$$
x=6+0 \times \delta+\delta^{2} x=6+\delta^{2} x
$$

But this implies

$$
x=\frac{6}{1-\delta^{2}}=\frac{6}{7} \times 16<16
$$

a contradiction. Hence, case 1 is not possible. Therefore, case 2 is not possible either. We conclude that $x=16$ and no profitable deviation exists.

