FINAL EXAM Econometrics Universidad Carlos III de Madrid 26/05/21

Write your name and group in each answer sheet. Answer all the questions in 2:30 hours.

1. (40%) Let $\{Y_i, X_{1i}, X_{2i}\}_{i=1}^n$ be observations independent and identically distributed as the random variables (Y, X_1, X_2) of some population, which maintain a causal relation according to the model

$$Y = X_1\beta_1 + X_2\beta_2 + u,\tag{1}$$

where u is an error with zero mean, variance σ^2 , and independent of (X_1, X_2) , and β_1 and β_2 are unknown parameters.

a. (1/5) Show that, if $\mathbb{E}(X_1X_2) = 0$ and $\mathbb{E}(X_1^2) > 0$,

$$\beta_1 = \frac{\mathbb{E}\left(X_1Y\right)}{\mathbb{E}\left(X_1^2\right)}.$$

- b. (2/5) Derive an expression for the β_1 estimator in model (1) as the *OLS* coefficient in a simple regression where the explanatory variable is the residual in the *OLS* fit of X_1 on X_2 without constant.
- c. (2/5) Suppose X_2 is not observable and is correlated with X_1 . We must estimate β_1 in the model

$$Y_i = \beta_0 + X_{1i}\beta_1 + v_i, \ i = 1, ..., n$$
(2)

where $\beta_0 = \mu_{X_2}\beta_2$ and $v_i = (X_{2i} - \mu_{X_2})\beta_2 + u_i \ (\mu_{X_2} = \mathbb{E}(X_2))$. Suppose we have an instrument Z that satisfies the exogeneity and relevance conditions.

- i. (1/3 of 1.c) Show that X_1 is an endogenous variable in model (2).
- ii. (2/3 of 1.c) Express β_0 , β_1 and v_i in terms of the coefficients and errors in the reduced forms of Y and X_1 .

2. (30%) The "scrap rate" for a manufacturing firm is the number of defective items -products that must be discarded- out of every 100 produced. We are interested in using the scrap rate to measure the effect of worker training on productivity.

A sample of firms is used to obtain the following regression results,

$$\ln\left(\widehat{scrap}_{i}\right) = \underbrace{11.74}_{(4.57)} - \underbrace{0.042hrsemp}_{(0.019)} + \underbrace{0.951}_{(0.370)} \ln\left(\operatorname{sales}_{i}\right) + \underbrace{0.992}_{(0.360)} \ln\left(\operatorname{employ}_{i}\right), \qquad (3)$$

$$n = 43, \ SCR = 65.91$$

where *hrsemp* is the annual hours of training per employee, *sales* is the annual firm sales (in dollars) and *employ* is the number of firms employees. It is reported that $\widehat{Cov}\left(\hat{\beta}_{\ln(sales)}, \hat{\beta}_{\ln(employ)}\right) = -0.11$. Standard errors and covariance estimate are robust in the presence of heteroskedasticity.

a. (2/5) Somebody decided to slightly reformulate the above specification and obtained:

$$\widehat{\ln(scrap_i)} = \underbrace{11.74}_{(4.57)} - \underbrace{0.042hrsemp_i}_{(0.019)} - \underbrace{0.951}_{(0.370)} \ln\left(\frac{sales_i}{employ_i}\right) + \underbrace{0.041}_{(??)} \ln\left(employ_i\right), (4)$$

$$n = 43, \ SCR = 65.91$$

Show that there is a one-to-one relationship between the parameters in (3) and (4) (1/2 of 2.a). Using this relationship and the information provided, calculate the omitted standard error of $\ln(employ)$ in (4) (1/2 of 2.a).

- b. (1/5) How the (4)'s equation coefficients would change if sales is reported in thousands of dollars rather than in dollars? Provide the numerical values of the new estimated coefficients.
- c. (2/5) Controlling for workers training (*hrsemp*) and for the sales to employees ratio (*sales/employ*), do bigger firms have larger statistically significant scrape rate? Establish the null and alternative hypotheses, the decision rule, and perform the test (3/4 of 2.c). How would you test that the *hrsemp* and ln (*sales*) coefficients are identical but of different signs? (1/4 of 2.c). Critical values of the standard normal Z: $Z_{0.005} = 2.58$, $Z_{0.01} = 2.33$, $Z_{0.025} = 1.96$, $Z_{0.05} = 1.64$, $Z_{0.1} = 1.28$, where $\mathbb{P}(Z > Z_{\alpha}) = \alpha$.
- 3. (30%) Consider estimating the labour supply of married women. Labour demand provides the offered salary in terms of demanded hours. Once we impose the equilibrium condition, the two

structural equations to be estimated are

$$hours = \beta_{10} + \beta_{11} \ln (wage) + \beta_{12} educ + \beta_{13} age + \beta_{14} kidslt6$$

$$+ \beta_{15} nwifeinc + \beta_{16} (kidslt6 \times nwifeinc) + u_1$$
(5)

and

$$\ln(wage) = \beta_{20} + \beta_{21}hours + \beta_{22}exper + \beta_{23}exper^2 + u_2, \tag{6}$$

where age is the woman age, educ years of education, kidslt6 the number of children less than 6, nwifeinc is the income of the household in thousands of dollars, including husband salary, excluded the women wage, and *exper* are the years of labour experience. We know that the control variables in the two equations (educ, age, kidslt6, nwifeinc and exper) are independent of the errors (u_1 and u_2), which are independent with zero mean. Use the GRETL output at the end of the document to answer the questions.

- a. (2/5) Which instrumental variables are available to estimate model (5) (labour supply) using TSLS? Explain with detail how to test that the available instruments are relevant: i) Provide the relevance condition and the null and alternative hypotheses; ii) explain how to compute the test statistic and iii) Provide the decision rule (1/2 of 3.a). Perform the test (1/2 of 3.a).
- b. (2/5) What is the mean difference in supplied hours for two women with identical characteristics except that one has two children less than 6 and her salary is the unique source of income, while the other woman does not have children less that six and she has a 20 thousand dollars household income additional to her salary? (1/2 of 3.b). Provide a confidence interval at 95% of confidence for such a difference and test whether the difference is significantly different from zero using the interval (1/2 of 3.b) Help: Critical values of the standard normal Z: $Z_{0.005} = 2.58$, $Z_{0.01} = 2.33$, $Z_{0.025} = 1.96$, $Z_{0.05} = 1.64$, $Z_{0.1} = 1.28$, where $\mathbb{P}(Z > Z_{\alpha}) = \alpha$.
- c. (1/5) Explain with detail how would you test that the instruments are exogenous: i) Establish the null and alternative hypotheses; ii) explain how to compute the test statistic and iii) provide the decision rule. (2/3 of 3.c). Perform the test at 5% of significance. (1/3 of 3.c). The critical values of the χ_q^2/q for $q = 1, \ldots, 5$ at 5% are $\chi_{1,0.05}^2 = 3.84$, $\chi_{2,0.05}^2/2 = 3.00$, $\chi_{3,0.05}^2/3 = 2.60$, $\chi_{4,0.05}^2/4 = 2.37$, $\chi_{5,0.05}^2/5 = 2.21$, respectively.

Model 1: OLS, using observations 1–428

Dependent variable: lwage

	Coe	fficient	Standard Error	t statistic	e p value
const	-0.44	19268	0.285534	-1.5734	0.1164
age	-0.00	0269880	0.00520903	-0.5181	0.6047
educ	0.10	01004	0.0149790	6.7430	0.0000
kidslt6	0.00	268457	0.163924	0.0164	0.9869
nwifeinc	0.00	615072	0.00362019	1.6990	0.0901
nwifeincXkidslt6	-0.00)322245	0.00795267	-0.4052	0.6855
exper	0.04	14884	0.0132833	3.1233	0.0019
expersq	-0.00	0747477	0.000402880	-1.8553	0.0642
Average of dep. var 1.190		1.190173	Std. Dev. of d	ep. var.	0.723198
Sum Squared residuals 186.784		186.7847	Std. Error of regression		0.666877
R^2		0.163629	Adjusted \mathbb{R}^2		0.149689
F(7, 420)		11.73846	p value (of F)		$1.14e{-13}$

Model 2: OLS, using observations 1–428

Dependent variable: lwage

	Coe	fficient	Standard Error	t statistic	p value
const	-0.43	34017	0.270691	-1.6034	0.1096
age	0.00	0503829	0.00455412	1.1063	0.2692
educ	0.10	07789	0.0151864	7.0977	0.0000
kidslt6	-0.02	241129	0.166747	-0.1446	0.8851
nwifeinc	0.00	0315312	0.00356191	0.8852	0.3765
nwifeincXkidslt6	-0.00	0318766	0.00806527	-0.3952	0.6929
Average of dep. v	ar	1.190173	B Std. Dev. of d	lep. var.	0.723198
Sum Squared resi	duals	195.0670) Std. Error of a	regression	0.679885
R^2		0.126543	Adjusted R^2		0.116193
F(5, 422)		12.22748	B p value (of F)		$4.40e{-11}$

Model 3: 2SLS, using observations 1-428

Dependent variable: hours

With Instruments: lwage

Instruments: const age educ kidslt6 nwifeinc nwifeincXkidslt6 exper expersq

	Coefficient	Standard Error	z	p value
const	2232.35	578.202	3.8608	0.0001
lwage	1643.67	471.901	3.4831	0.0005
age	-7.78173	9.40253	-0.8276	0.4079
educ	-184.111	59.2247	-3.1087	0.0019
kidslt6	-240.214	333.275	-0.7208	0.4711
nwifeinc	-10.6106	7.26892	-1.4597	0.1444
nwifeincXkidlt6	2.43423	16.1806	0.1504	0.8804
Average of dep. van	r 1302.93	0 Std. Dev. of	dep. var.	776.2744
Sum Squared residu	1als 7.76e+0.03	8 Std. Error of	regression	1358.086
R^2	0.000534	4 Adjusted R^2		-0.013710
F(6, 421)	2.866484	4 p value (of F))	0.009519

Covariance matrix of the coefficients in model 3

const	lwage	age	educ	kidslt6	nwifeinc	nwifXkids	
3.3432e + 05	96652.	-4042.1	-21294.	-26188.	-225.98	833.62	const
	2.2269e + 05	-1122.0	-24004.	5369.7	-702.17	709.86	lwage
		88.408	131.55	427.63	-3.2554	1.2589	age
			3507.6	-1403.5	16.223	-67.471	educ
				1.1107e + 05	817.65	-4502.4	kidslt6
					52.837	-48.120	nwifeinc
						261.81	nwifXkids

Model 4: OLS, using observations 1–428

Dependent variable: uhat

IMPORTANT: uhat are the residuals corresponding to model 3.

	Coefficient	Standard Error	t statistic	p value
const	194.274	581.606	0.3340	0.7385
age	-3.68530	10.6103	-0.3473	0.7285
educ	0.190471	30.5108	0.0062	0.9950
kidslt6	16.7347	333.899	0.0501	0.9601
nwifeinc	1.19491	7.37399	0.1620	0.8713
nwifeincXkisdlt6	-1.50531	16.1989	-0.0929	0.9260
exper	-16.9634	27.0570	-0.6270	0.5310
experse	0.673158	0.820630	0.8203	0.4125
Average of dep. var	r 6.44e–1	3 Std. Dev. of	dep. var.	1348.511
Sum Squared resid	uals $7.75e+0$	8 Std. Error of	regression	1358.368
R^2	0.00196	2 Adjusted R^2		-0.014672
F(7, 420)	0.11792	2 p value (of F))	0.997131

Hypothesis test on model 4:

Null hypothesis: the regression parameters are zero for the variables exper and expersq Test statistic: F(2,420)=0.412728, p value 0.66211