FINAL EXAM. ECONOMETRICS

Answer each question in a different booklet in two hours and a half. All exercises have the same grading.

1. We wish to estimate the following wage equation

$$
\begin{equation*}
\log (\text { wage })=\beta_{0}+\beta_{1} \text { educ }+\beta_{2} \text { exper }+\beta_{3} \text { exper }^{2}+a b i l+u \tag{1}
\end{equation*}
$$

where wage are monthly earnings, educ are years of schooling, exper are years of work experience and u satisfies the usual assumptions of the multiple linear regression model, but we do not observe the ability of the worker (abil).
We have observations for the scores of two tests (test1 and test2) which are indicators of the ability (abil). We assume that the scores can be written as

$$
\text { test } 1=\gamma_{1} a b i l+e 1, \quad \operatorname{Cov}(a b i l, e 1)=0
$$

and

$$
\text { test } 2=\delta_{1} a b i l+e 2, \quad \operatorname{Cov}(a b i l, e 2)=0,
$$

where $\gamma_{1}>0$ and $\delta_{1}>0$. Given that it is ability which causes the wage, we can assume that test 1 and test 2 are not correlated with u, and we also assume that $e 1$ and $e 2$ are not correlated with any of the explanatory variables in (1).
(a) Explain why an OLS regression of (1) with omitted abil will produce inconsistent estimates and argue whether test 1 and test 2 are valid instruments.
(b) If we write abil in terms of the score of the first test and we plug in the result in (1), we obtain

$$
\begin{equation*}
\log (\text { wage })=\beta_{0}+\beta_{1} \text { educ }+\beta_{2} \text { exper }+\beta_{3} \text { exper }^{2}+\alpha_{1} \text { test } 1+v \tag{2}
\end{equation*}
$$

Determine the value of α_{1}, write v in terms of u and $e 1$, and prove that test 1 is endogenous in this equation. Would an OLS regression of (2) produce consistent estimates of β_{1} ?
(c) If additionally we assume that $e 1$ and $e 2$ are not mutually correlated, would you use test2 preferably as an additional control variable or as an instrument for test1 in (2)? Explain your answer.
(d) Consider equation (2) and the estimation output of Table 1. Test, if possible, whether test 2 is a relevant instrument for test1. Test, if possible, whether test 2 is exogenous. Which information is given by the estimation output about whether test 1 is endogenous or exogenous (assuming that test 2 is exogenous)?

Table 1: Regression table

	(1)	(2)	(3)	(4)	(5)	(6)
Dependent var.:	\log (wage)	$\log ($ wage $)$	\log (wage)	test1	test2	$\log ($ wage $)$
educ	0.0780	0.0573	0.0478	2.637	1.258	0.00965
	(0.00680)	(0.00792)	(0.00860)	(0.243)	(0.116)	(0.0178)
exper	0.0163	0.0157	0.0179	0.239	-0.290	0.0145
	(0.0140)	(0.0140)	(0.0138)	(0.398)	(0.222)	(0.0154)
exper ${ }^{2}$	0.000152	0.000165	-0.0000685	-0.0181	0.0307	0.000194
	(0.000588)	(0.000591)	(0.000587)	(0.0167)	(0.00916)	(0.000656)
test1		0.00579	0.00468		0.146	0.0191
		(0.000984)	(0.000999)		(0.0155)	(0.00424)
test2			0.00758	0.524		
			(0.00206)	(0.0614)		
Constant	5.517	5.214	5.194	47.02	2.672	4.514
	(0.125)	(0.131)	(0.128)	(3.874)	(2.336)	(0.239)
ObservationsR^{2}	935	935	935	935	935	935
	0.131	0.162	0.176	0.322	0.267	.
Robust standard er	in parenth					

2. We want to estimate this equation

$$
\text { sleep }=\beta_{0}+\beta_{1} \text { totwrk }+\beta_{2} \text { educ }+\beta_{3} \text { age }+\beta_{4} \text { age }{ }^{2}+\beta_{5} y n g k i d ~+u .
$$

to explain the minutes of sleep at night (per week), sleep, of a sample of workers, males and females, in terms of totwrk (mins worked per week), educ (years of schooling), age (in years) and yngkid (which is a binary variable equal to one if children less than 3 years old are present at home). Assume that u satisfies the usual regression assumptions, including conditional homoskedasticity. Using the appropriate estimation output in Table 2 answer the following questions.
(a) Test whether the same regression model is appropriate for both men and women and whether there is a discrimination against women in the child care duties.
(b) Test whether the effect of age on sleep depends on gender and find the level of age where the expected value of sleep is minimum for women, all other factors fixed.
(c) Construct and interpret a 95% confidence interval for the effect over sleep of an increment of one year of education for a man.
(d) Test if the average effect on sleep of one additional year of age is equal to the effect of one year less of educ for 20 years old males, everything else fixed.

Table 2: Regression table

Dependent var.:	${ }_{\text {(1) }}$	(2)	(3)	(4)	${ }^{(5)}$
	sleep	sleep	sleep	sleep	sleep
totwrk	$\begin{gathered} -0.146 \\ (0.0191) \end{gathered}$	$\begin{gathered} -0.163 \\ (0.0207) \end{gathered}$	$\begin{gathered} -0.182 \\ (0.0293) \end{gathered}$	$\begin{gathered} -0.183 \\ (0.0291) \end{gathered}$	$\begin{gathered} -0.182 \\ (0.0293) \end{gathered}$
educ	$\begin{aligned} & -11.14 \\ & (5.747) \end{aligned}$	$\begin{aligned} & -11.71 \\ & (5.748) \end{aligned}$	$\begin{aligned} & -13.05 \\ & (7.767) \end{aligned}$	$\begin{aligned} & -13.87 \\ & (7.646) \end{aligned}$	$\begin{gathered} -7.731 \\ (11.58) \end{gathered}$
age	$\begin{aligned} & -8.124 \\ & (11.86) \end{aligned}$	$\begin{aligned} & -8.697 \\ & (11.79) \end{aligned}$	$\begin{gathered} 7.157 \\ (13.63) \end{gathered}$	$\begin{aligned} & -9.230 \\ & (11.78) \end{aligned}$	
age ${ }^{2}$	$\begin{gathered} 0.126 \\ (0.137) \end{gathered}$	$\begin{gathered} 0.128 \\ (0.136) \end{gathered}$	$\begin{gathered} -0.0448 \\ (0.156) \end{gathered}$	$\begin{gathered} 0.133 \\ (0.136) \end{gathered}$	
yngkid	$\begin{aligned} & 17.15 \\ & (53.93) \end{aligned}$	$\begin{array}{r} -0.0228 \\ (53.91) \end{array}$	$\begin{gathered} 60.38 \\ (64.52) \end{gathered}$	$\begin{gathered} 39.54 \\ (62.57) \end{gathered}$	$\begin{gathered} 60.38 \\ (64.52) \end{gathered}$
female		$\begin{aligned} & -87.75 \\ & (35.54) \end{aligned}$	$\begin{gathered} 590.5 \\ (541.6) \end{gathered}$	$\begin{gathered} -226.2 \\ (162.4) \end{gathered}$	$\begin{gathered} 590.5 \\ (541.6) \end{gathered}$
totwrkf*female			$\begin{gathered} 0.0422 \\ (0.0412) \end{gathered}$	$\begin{gathered} 0.0381 \\ (0.0406) \end{gathered}$	$\begin{gathered} 0.0422 \\ (0.0412) \end{gathered}$
educ*female			$\begin{gathered} 2.847 \\ (11.53) \end{gathered}$	$\begin{gathered} 5.748 \\ (11.01) \end{gathered}$	$\begin{gathered} 2.847 \\ (11.53) \end{gathered}$
age*female			$\begin{aligned} & -37.51 \\ & (24.91) \end{aligned}$		$\begin{aligned} & -37.51 \\ & (24.91) \end{aligned}$
age ${ }^{2}$ female			$\begin{gathered} 0.413 \\ (0.289) \end{gathered}$		$\begin{gathered} 0.413 \\ (0.289) \end{gathered}$
yngkid*female			$\begin{aligned} & -178.7 \\ & (117.6) \end{aligned}$	$\begin{aligned} & -128.0 \\ & (109.6) \end{aligned}$	$\begin{gathered} -178.7 \\ (117.6) \end{gathered}$
age - educ					$\begin{gathered} 7.157 \\ (13.63) \end{gathered}$
age $^{2}-41 *$ educ					$\begin{gathered} -0.0448 \\ (0.156) \end{gathered}$
Constant	$\begin{array}{r} 3825.4 \\ (259.3) \\ \hline \end{array}$	$\begin{array}{r} 3928.6 \\ (257.9) \\ \hline \end{array}$	$\begin{array}{r} 3648.2 \\ (323.0) \\ \hline \end{array}$	$\begin{array}{r} 4010.0 \\ (278.7) \\ \hline \end{array}$	$\begin{array}{r} 3648.2 \\ (323.0) \\ \hline \end{array}$
Observations	706	706	706	706	706
R^{2}	0.115	0.123	0.131	0.126	0.131

3. Consider a simple regression model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}
$$

and let Z_{i} be a binary instrument for X_{i}.
(a) Show that the 2SLS estimator of β_{1} can be written as

$$
\hat{\beta}_{1}^{2 S L S}=\frac{\bar{Y}_{1}-\bar{Y}_{0}}{\bar{X}_{1}-\bar{X}_{0}}
$$

where \bar{Y}_{1} and \bar{X}_{1} denote the means of Y_{i} and X_{i} (respectively) over that part of the sample with $Z_{i}=1$ and \bar{Y}_{0} and \bar{X}_{0} denote the means of Y_{i} and X_{i} (respectively) over that part of the sample with $Z_{i}=0$.
Hint: denoting by n_{1} the number of observations for which $Z_{i}=1$ and by n_{0} the number of observations for which $Z_{i}=0, n=n_{1}+n_{0}$, we can write

$$
\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}=\frac{1}{n}\left(\sum_{i: Z_{i}=1} Y_{i}+\sum_{i: Z_{i}=0} Y_{i}\right)=\frac{n_{1}}{n} \bar{Y}_{1}+\frac{n_{0}}{n} \bar{Y}_{0}
$$

Consider a simple model to estimate the effects of personal computer (PC) ownership on college grade point average for graduating seniors at a university,

$$
G P A_{i}=\beta_{0}+\beta_{1} P C_{i}+u_{i}
$$

where $P C_{i}$ is a binary variable indicating PC ownership.
(b) Why might PC ownership be correlated with u_{i} ? Explain why $P C_{i}$ is likely to be related to parent's annual income. Does this mean that parental income is a good instrumental variable for $P C_{i}$? Why or why not.
(c) Suppose that, four years ago, the university gave grants to buy computers to half of the incoming students, and the students who received the grants were randomly chosen. Explain how you would use this information to construct an instrumental variable for $P C_{i}$.
In particular, if you were told

- that among those students who received the grants, 90% of them owned a PC and the group had an average GPA of 3.05 and
- that among those students who did not receive the grants, 75% of them owned a PC and the group had an average GPA of 2.75.
What would your estimate $\hat{\beta}_{1}^{2 S L S}$ be?
(d) Now imagine that the university only gave grants to (randomly selected) students whose parent's family income were lower than a given threshold (and we have a list of students that qualified, but we still do not observe family income). How would you need to modify your model and/or estimation strategy to obtain consistent estimates of β_{1} ?

SOME CRITICAL VALUES: $Z_{0.90}=1.282, Z_{0.95}=1.645, Z_{0.975}=1.96, \chi_{2,0.95}^{2}=5.99, \chi_{2,0.975}^{2}=$ $7.378, \chi_{3,0.95}^{2}=7.815, \chi_{3,0.975}^{2}=9.348, \chi_{4,0.95}^{2}=9.488, \chi_{4,0.975}^{2}=11.143, \chi_{5,0.95}^{2}=11.071$, $\chi_{5,0.975}^{2}=12.833, \chi_{6,0.95}^{2}=12.592, \chi_{6,0.975}^{2}=14.449$, where $\mathbb{P}\left(Z \leq Z_{\alpha}\right)=\alpha$ and $\mathbb{P}\left(\chi_{m}^{2} \leq \chi_{m, \alpha}^{2}\right)=$ α, Z is distributed as a standard normal with zero mean and unit variance, and χ_{m}^{2} as a chi-square with m degrees of freedom.

FINAL EXAM. ECONOMETRICS SOLUTIONS

1. We wish to estimate the following wage equation

$$
\begin{equation*}
\log (\text { wage })=\beta_{0}+\beta_{1} \text { educ }+\beta_{2} \text { exper }+\beta_{3} \text { exper }^{2}+a b i l+u \tag{3}
\end{equation*}
$$

where wage are monthly earnings, educ are years of schooling, exper are years of work experience and u satisfies the usual assumptions of the multiple linear regression model, but we do not observe the ability of the worker (abil).
We have observations for the scores of two tests (test1 and test2) which are indicators of the ability (abil). We assume that the scores can be written as

$$
\text { test } 1=\gamma_{1} a b i l+e 1, \quad \operatorname{Cov}(a b i l, e 1)=0
$$

and

$$
\text { test } 2=\delta_{1} a b i l+e 2, \quad \operatorname{Cov}(a b i l, e 2)=0
$$

where $\gamma_{1}>0$ and $\delta_{1}>0$. Given that it is ability which causes the wage, we can assume that test 1 and test 2 are not correlated with u, and we also assume that e1 and e 2 are not correlated with any of the explanatory variables in (3).
(a) Explain why an OLS regression of (3) with omitted abil will produce inconsistent estimates and argue whether test 1 and test 2 are valid instruments.
[50%] Es razonable pensar que abil estará correlada con alguna de los regresores incluídos, en particular con educ, por lo que se estaría incumpliendo el supuesto $E[u \mid$ educ, exper $]=0$ ya que $\operatorname{Cov}(u, e d u c) \neq 0$.
[50\%] De igual forma, las dos ecuaciones para test1 y para test2, también implican que $\operatorname{Cov}($ test $1, a b i l) \neq 0$ y $\operatorname{Cov}($ test $2, a b i l) \neq 0$, y por tanto estarían correladas con el error $a b i l+u$, es decir, no serían exógenas (aunque previsiblemente estarían correladas con educ y otros regresores potencialmente endógenos).
(b) If we write abil in terms of the score of the first test and we plug in the result in (1), we obtain

$$
\begin{equation*}
\log (\text { wage })=\beta_{0}+\beta_{1} \text { educ }+\beta_{2} \text { exper }+\beta_{3} \text { exper }^{2}+\alpha_{1} \text { test } 1+v \tag{4}
\end{equation*}
$$

Determine the value of α_{1}, write v in terms of u and $e 1$, and prove that test 1 is endogenous in this equation. Would an OLS regression of (4) produce consistent estimates of β_{1} ?
[50\%] Despejando abil se obtiene

$$
a b i l=\frac{1}{\gamma_{1}} \text { test } 1-\frac{1}{\gamma_{1}} e 1
$$

y sustituyendo en (3) se obtiene

$$
\begin{aligned}
\log (\text { wage }) & =\beta_{0}+\beta_{1} \text { educ }+\beta_{2} \text { exper }+\beta_{3} \text { exper }^{2}+\frac{1}{\gamma_{1}} \text { test } 1-\frac{1}{\gamma_{1}} e 1+u \\
\alpha_{1} & =\frac{1}{\gamma_{1}}, \quad v=u-\frac{1}{\gamma_{1}} e 1
\end{aligned}
$$

[50\%] En este caso, los regresores originales, educ, exper y exper ${ }^{2}$ están incorrelados con v porque lo están con $e 1$ y con u. test 1 también está incorrelado con u, pero no con $e 1$, ya que $\operatorname{Cov}($ test $1, e 1)=\operatorname{Var}(e 1)>0$, por lo que test 1 es endógena en (4) y en ese caso el estimador MCO de todos los coeficienets, incluyendo β_{1}, serán inconsistentes.
(c) If additionally we assume that e1 and e2 are not mutually correlated, would you use test 2 preferably as an additional control variable or as an instrument for test1 in (4)? Explain your answer.
[50\%] Para saber si test2 es un buen instrumento hay que comprobar la exogeneidad de test 2 en (4) y su relevancia para el regresor endógeno en (4) que es test2 :

- exogeneidad: $\operatorname{Cov}(t e s t 2, v)=0$, que se cumple porque test 2 está incorrelado con u (no está omitida en (3)) y con $e 1$, ya que se asume que el error $e 1$ no depende de ningún regresor en (3).
- relevancia: $\operatorname{Cov}($ test 2, test 1$)=\gamma_{1} \delta_{1} \operatorname{Var}($ abil $) \neq 0$.
[50%] Por tanto test 2 sería un instrumento válido, pero por esa razón no podría ser una buena variable de control porque no aportaría ninguna información sobre factores omitidos contenidos en el error v, ya que $\operatorname{Cov}(t e s t 2, v)=0$.
(d) Consider equation (4) and the estimation output of Table 1. Test, if possible, whether test 2 is a relevant instrument for test1.
[25\%] Para hacer el contraste hay que comprobar que test 2 es significativa en la forma reducida de test1, regresando test 1 sobre todas las variables exógenas

$$
\text { test } 1=\pi_{0}+\pi_{1} \text { educ }+\pi_{2} \text { exper }+\pi_{3} \text { exper }^{2}+\pi_{4} \text { test } 2+w .
$$

Se realizaría el contraste de

$$
\begin{array}{ll}
H_{0} & : \quad \pi_{4}=0 \\
H_{1} & : \\
\pi_{4} \neq 0
\end{array}
$$

con un contraste t.
[25\%] Usando el output de la regresión (4)

$$
t_{4}=\frac{\hat{\pi}_{4}}{s e\left(\hat{\pi}_{4}\right)}=\frac{0.524}{0.0614}=8.534
$$

que es significativo comparado con cualquier valor crítico de una $N(0,1)$, por lo que test 2 es relevante.
Test, if possible, whether test 2 is exogenous.
[25\%] El contraste de $\operatorname{Cov}(t e s t 2, v)=0$ no se puede realizar porque la ecuación está exactamente identificada al existir un sólo instrumento, test2, para el regresor endógeno, test1.
Which information is given by the estimation output about whether test 1 is endogenous or exogenous (assuming that test 2 is exogenous)?
[25\%] Si test1 fuese exógena, entonces los estimadores MCO deberían ser consistentes, al igual que los estimadores MC2E, ya que el instrumento se supone exógeno. En este caso comparando las regresiones (2) y (6) en la Tabla 1 podemos ver que ciertos coeficientes, como el de educ, cambian sustancialmente, indicando que posiblemente algo vaya mal en la regresión MCO si damos por buena la regresión MC2E.
Note. With that general argument it would be enough for the full grade. It could be argued that test 1 is a valid control variable, but it should be demonstrated/argued that test 1 satisfies the conditions of a control variable (that is, once it is conditioned by test1, the expected value of error v does not change when it changes educ), although in reality there is no argument to justify this, the problem arises that the part of the error v that does not explain test1, may be correlated with educ, even if v is not.
For the demonstration that in particular the MCO of β_{1} is consistent, the key would be to verify that when we replace the regression of the error v on the possible control variable test1,

$$
v=\eta_{0}+\eta_{1} \text { test } 1+s, \quad \operatorname{Cov}(\text { test } 1, s)=0, \quad \eta_{1} \neq 0
$$

where $\eta_{1} \neq 0$ because we have concluded that test 1 is endogenous, in the regression with test1 and we obtain a model with error s,

$$
\begin{aligned}
\log (\text { wage }) & =\beta_{0}+\beta_{1} \text { educ }+\beta_{2} \text { exper }+\beta_{3} \text { exper }^{2}+\alpha_{1} \text { test } 1+\eta_{0}+\eta_{1} \text { test } 1+s \\
& =\beta_{0}+\eta_{0}+\beta_{1} \text { educ }+\beta_{2} \text { exper }+\beta_{3} \text { exper }^{2}+\left(\alpha_{1}+\eta_{1}\right) \text { test } 1+s
\end{aligned}
$$

it holds that

$$
\begin{equation*}
\operatorname{Cov}(e d u c, s)=0 \tag{5}
\end{equation*}
$$

(and similarly for exper and exper ${ }^{2}$).
From this OLS regression obviously one can not expect to consistently estimate the true coefficient of test $1, \alpha_{1}$, but $\alpha_{1}+\eta_{1} \neq \alpha_{1}$, but also this problem is transmitted to the estimation of the other coefficients, except if it is fulfilled (5), which it is not true because

$$
\begin{aligned}
\operatorname{Cov}(e d u c, s) & =\operatorname{Cov}\left(e d u c, v-\eta_{1} t e s t 1\right) \\
& =\operatorname{Cov}\left(e d u c,-\eta_{1} t e s t 1\right) \text { because } \operatorname{Cov}(e d u c, v)=0 \\
& =-\eta_{1} \operatorname{Cov}(e d u c, t e s t 1) \\
& =-\eta_{1} \operatorname{Cov}\left(e d u c, \gamma_{1} a b i l+e 1\right) \\
& =-\eta_{1} \operatorname{Cov}\left(e d u c, \gamma_{1} a b i l\right) \text { because } \operatorname{Cov}(e d u c, e 1)=0 \\
& =-\eta_{1} \gamma_{1} \operatorname{Cov}(e d u c, a b i l)
\end{aligned}
$$

which is different from zero because we hope that educ is correlated with abil and $\eta_{1} \gamma_{1} \neq 0$.
2. We want to estimate this equation

$$
\text { sleep }=\beta_{0}+\beta_{1} \text { totwr } k+\beta_{2} \text { educ }+\beta_{3} \text { age }+\beta_{4} \text { age }{ }^{2}+\beta_{5} y n g k i d ~+u
$$

to explain the minutes of sleep at night (per week), sleep, of a sample of workers, males and females, in terms of totwrk (mins worked per week), educ (years of schooling), age (in years) and yngkid (which is a binary variable equal to one if children less than 3 years old are present at home). Assume that u satisfies the usual regression assumptions, including conditional homoskedasticity. Using the appropriate estimation output in Table 2 answer the following questions.
(a) Test whether the same regression model is appropriate for both men and women and whether there is a discrimination against women in the child care duties.
[25\%] For that we have to test in the model including the binary regressor female and all the interactions of female with the regressors, whether all those variables depending on female are jointly significant, i.e. testing in

$$
\begin{aligned}
\text { sleep }= & \beta_{0}+\beta_{1} \text { totwr } k+\beta_{2} \text { educ }+\beta_{3} \text { age }+\beta_{4} \text { age } e^{2}+\beta_{5} \text { yngkid } \\
& +\beta_{6} \text { female }+\beta_{7} \text { totwrk } * \text { female }+\beta_{8} \text { educ } * \text { female }+\beta_{9} \text { age } * \text { female } \\
& +\beta_{10} \text { age }^{2} * \text { female }+\beta_{11} \text { yngkid } * \text { female }+u
\end{aligned}
$$

the hypotheses

$$
\begin{aligned}
H_{0} & : \beta_{6}=\cdots=\beta_{11}=0 \\
H_{1} & : H_{0} \text { is false. }
\end{aligned}
$$

[25\%] For that we can conduct an F test under the assumption of homoscedasticity,

$$
F=\frac{R_{u r}^{2}-R_{r}^{2}}{1-R_{u r}^{2}} \frac{n-k-1}{q}=\frac{0.131-0.115}{1-0.131} \frac{706-11-1}{6}=2.13
$$

comparing the restricted model (1) with the unrestricted (3). The 5% critical value is given by the $\chi^{2}(6) / 6$ distribution of the F test for large samples, i.e. $12.592 / 6=2.099$, so that the F statistic is significatively different from zero at the 5% level, and we can reject (marginally) H_{0}, concluding that the regression for females is different from that for males.
Note. Testing the hypotheses

$$
\begin{aligned}
& H_{0}^{*}: \beta_{6}=0 \\
& H_{1}^{*}:
\end{aligned} \beta_{6} \neq 0
$$

in a model with only female

$$
\begin{align*}
\text { sleep }= & \beta_{0}+\beta_{1} \text { totwrk }+\beta_{2} \text { educ }+\beta_{3} \text { age }+\beta_{4} \text { age } e^{2}+\beta_{5} \text { yngkid } \tag{6}\\
& +\beta_{6} \text { female }+u
\end{align*}
$$

is not correct because (6) is not accouting for (full) separate regressions for women and men, but a restricted version of the general model where H_{1}^{*} is just a particular deviation of the hypothesis of equal regressions, once the restrictions $\beta_{7}=\cdots=\beta_{11}=0$ are imposed without justification.
[25\%] To identify discrimination against women we can test

$$
\begin{array}{ll}
H_{0} & : \quad \beta_{11}=0 \\
H_{1} & : \\
\beta_{11}<0
\end{array}
$$

where the alternative indicates that women sleep less on average than males when children are present, with a one-sided t-test
[25\%]

$$
t_{11}=\frac{\hat{\beta}_{11}}{\operatorname{se}\left(\hat{\beta}_{11}\right)}=\frac{-178.7}{117.6}-1.5196
$$

which is not significative at the 5% level, for which the one-sided critical value from the $N(0,1)$ is -1.645 , so that there is no enough evidence supporting discrimination.
(b) Test whether the effect of age on sleep depends on gender and find the level of age where the expected value of sleep is minimum for women, all other factors equal.
[30\%] The hypotheses to be tested are

$$
\begin{aligned}
& H_{0}: \beta_{9}=\beta_{10}=0 \\
& H_{0}: \beta_{9} \neq 0 \text { or } \beta_{10} \neq 0
\end{aligned}
$$

with an F test under the assumption of homoscedasticity,
[30\%]

$$
F=\frac{R_{u r}^{2}-R_{r}^{2}}{1-R_{u r}^{2}} \frac{n-k-1}{q}=\frac{0.131-0.126}{1-0.131} \frac{706-11-1}{2}=2
$$

comparing the restricted model (4) with the unrestricted (3). The 5% critical value is given by the $\chi^{2}(2) / 2$ distribution of the F test for large samples, i.e. $5.99 / 2=2.99$, so that the F statistic is not significatively different from zero at the 5% level, so we can not reject H_{0}, concluding that there is not empirical evidence supporting that the effect of age over sleep is different by gender.
[40\%] For women the effect of age is described by

$$
\left(\beta_{3}+\beta_{9}\right) \text { age }+\left(\beta_{4}+\beta_{10}\right) a g e^{2}
$$

and, given that $\hat{\beta}_{4}+\hat{\beta}_{10}>0$, the minimum is estimated as

$$
\text { age }{ }_{\text {female }}^{*}=-\frac{\hat{\beta}_{3}+\hat{\beta}_{9}}{2\left(\hat{\beta}_{4}+\hat{\beta}_{10}\right)}=-\frac{7.157-37.51}{2 *(-0.0448+0.413)}=41.22
$$

(c) Construct and interpret a 95\% confidence interval for the effect over sleep of an increment of one year of education for a man.
[75\%] This effect is given by the coefficient β_{2}, so the confidence interval is

$$
\hat{\beta}_{2} \pm 1.96 s e\left(\hat{\beta}_{2}\right)
$$

i.e., using output (3) we obtain

$$
-13.05 \pm 1.96 \cdot 7.767 \quad \text { or } \quad[-28.273,2.1733]
$$

[25\%] meaning that this effect is not significatively different from zero at the 5% level.
(d) Test if the average effect on sleep of one additional year of age is equal to the effect of one year less of educ for 20 years old males, everything else fixed.
[30\%] The two effects are

$$
\begin{aligned}
& E[\text { sleep } \mid \text { age }=21, \text { male }, x]-E[\text { sleep } \mid \text { age }=20, \text { male }, x] \\
= & \beta_{3}(21)+\beta_{4}(21)^{2}-\left(\beta_{3}(20)+\beta_{4}(20)^{2}\right) \\
= & \beta_{3}+41 \beta_{4},
\end{aligned}
$$

and

$$
E[\text { sleep } \mid \text { educ }-1, \text { male }, x]-E[\text { sleep } \mid \text { educ, male }, x]=\beta_{2}(e d u c-1)-\beta_{2} e d u c=-\beta_{2},
$$

respectively, and equality between the two effects implies that

$$
H_{0}: \theta=0
$$

where

$$
\theta=\left(\beta_{3}+41 \beta_{4}\right)-\left(-\beta_{2}\right)=\beta_{2}+\beta_{3}+41 \beta_{4}=0
$$

[40\%] and replacing $\beta_{2}=\theta-\left(\beta_{3}+41 \beta_{4}\right)$ in the model we obtain

$$
\begin{aligned}
\text { sleep }= & \beta_{0}+\beta_{1} \text { totwrk }+\left\{\theta-\left(\beta_{3}+41 \beta_{4}\right)\right\} \text { educ }+\beta_{3} \text { age }+\beta_{4} \text { age } e^{2}+\beta_{5} \text { yngkid } \\
& +\beta_{6} \text { female }+\beta_{7} \text { totwrk } * \text { female }+\beta_{8} \text { educ } * \text { female }+\beta_{9} \text { age } * \text { female } \\
& +\beta_{10} \text { age } * \text { female }+\beta_{11} \text { yngkid } * \text { female }+u
\end{aligned}
$$

or equivalently,

$$
\begin{aligned}
\text { sleep }= & \beta_{0}+\beta_{1} \text { totwrk }+\theta \text { educ }+\beta_{3}(\text { age }- \text { educ })+\beta_{4}\left(\text { age } e^{2}-41 e d u c\right)+\beta_{5} \text { yngkid } \\
& +\beta_{6} \text { female }+\beta_{7} \text { totwrk } * \text { female }+\beta_{8} \text { educ } * \text { female }+\beta_{9} \text { age } * \text { female } \\
& +\beta_{10} \text { age }^{2} * \text { female }+\beta_{11} \text { yngkid } * \text { female }+u
\end{aligned}
$$

so for testing H_{0} against $H_{1}: \theta \neq 0$ we use a t-test for the coefficient of educ in regression (5) of Table 2,
[30\%]

$$
t_{\theta}=\frac{\hat{\theta}}{s e(\hat{\theta})}=\frac{-7.731}{11.58}=-0.66762
$$

which is not significative against the $N(0,1)$ critical value at any usual level, meaning that we cannot reject the null of equality between both effects.
3. Consider a simple regression model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}
$$

and let Z_{i} be an binary instrument for X_{i}.
(a) Show that the 2SLS estimator of β_{1} can be written as

$$
\hat{\beta}_{1}^{2 S L S}=\frac{\bar{Y}_{1}-\bar{Y}_{0}}{\bar{X}_{1}-\bar{X}_{0}}
$$

where \bar{Y}_{1} and \bar{X}_{1} denote the means of Y_{i} and X_{i} (respectively) over that part of the sample with $Z_{i}=1$ and \bar{Y}_{0} and \bar{X}_{0} denote the means of Y_{i} and X_{i} (respectively) over that part of the sample with $Z_{i}=0$. Hint: denoting by n_{1} the number of observations for which $Z_{i}=1$ and by n_{0} the number of observations for which $Z_{i}=0, n=n_{1}+n_{0}$, we can write

$$
\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}=\frac{1}{n}\left(\sum_{i: Z_{i}=1} Y_{i}+\sum_{i: Z_{i}=0} Y_{i}\right)=\frac{n_{1}}{n} \bar{Y}_{1}+\frac{n_{0}}{n} \bar{Y}_{0}
$$

[$50 \%, 10 \%$ for the first expression of 2SLS] We know that

$$
\begin{aligned}
\hat{\beta}_{1}^{2 S L S} & =\frac{\widehat{\operatorname{Cov}}(Y, Z)}{\widehat{\operatorname{Cov}}(X, Z)}=\frac{\frac{1}{n} \sum_{i=1}^{n} Y_{i} Z_{i}-\bar{Y} \bar{Z}}{\frac{1}{n} \sum_{i=1}^{n} X_{i} Z_{i}-\bar{X} \bar{Z}} \\
& =\frac{\frac{1}{n} \sum_{i: Z_{i}=1} Y_{i}-\bar{Y} \frac{n_{1}}{n}}{\frac{1}{n} \sum_{i: Z_{i}=1} X_{i}-\bar{X} \frac{n_{1}}{n}}=\frac{\frac{n_{1}}{n} \bar{Y}_{1}-\bar{Y} \frac{n_{1}}{n}}{\frac{n_{1}}{n} \bar{X}_{1}-\bar{X} \frac{n_{1}}{n}}=\frac{\bar{Y}_{1}-\bar{Y}}{\bar{X}_{1}-\bar{X}}
\end{aligned}
$$

because

$$
\bar{Z}=\frac{1}{n} \sum_{i=1}^{n} Z_{i}=\frac{1}{n} \sum_{i: Z_{i}=1} 1=\frac{n_{1}}{n}
$$

where n_{1} is the number of observations for which $Z_{i}=1$, and

$$
\bar{Y}_{1}=\frac{1}{n_{1}} \sum_{i: Z_{i}=1} Y_{i}, \quad \bar{X}_{1}=\frac{1}{n_{1}} \sum_{i: Z_{i}=1} X_{i} .
$$

Next, denoting as n_{0} is the number of observations for which $Z_{i}=0, n=n_{1}+n_{0}$, we can write

$$
\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}=\frac{1}{n}\left(\sum_{i: Z_{i}=1} Y_{i}+\sum_{i: Z_{i}=0} Y_{i}\right)=\frac{n_{1}}{n} \bar{Y}_{1}+\frac{n_{0}}{n} \bar{Y}_{0}
$$

[50\%] and similarly for \bar{X}, we obtain

$$
\begin{aligned}
\hat{\beta}_{1}^{M C 2 E} & =\frac{\bar{Y}_{1}-\bar{Y}}{\bar{X}_{1}-\bar{X}}=\frac{\bar{Y}_{1}-\frac{n_{1}}{n} \bar{Y}_{1}-\frac{n_{0}}{n} \bar{Y}_{0}}{\bar{X}_{1}-\frac{n_{1}}{n} \bar{X}_{1}-\frac{n_{0}}{n} \bar{X}_{0}}=\frac{\bar{Y}_{1}\left(1-\frac{n_{1}}{n}\right)-\frac{n_{0}}{n} \bar{Y}_{0}}{\bar{X}_{1}\left(1-\frac{n_{1}}{n}\right)-\frac{n_{0}}{n} \bar{X}_{0}} \\
& =\frac{\bar{Y}_{1} \frac{n_{0}}{n}-\frac{n_{0}}{n} \bar{Y}_{0}}{\bar{X}_{1} \frac{n_{0}}{n}-\frac{n_{0}}{n} \bar{X}_{0}}=\frac{\bar{Y}_{1}-\bar{Y}_{0}}{\bar{X}_{1}-\bar{X}_{0}} .
\end{aligned}
$$

Consider a simple model to estimate the effects of personal computer (PC) ownership on college grade point average for graduating seniors at a university

$$
G P A_{i}=\beta_{0}+\beta_{1} P C_{i}+u_{i}
$$

where $P C_{i}$ is a binary variable indicating PC ownership.
(b) Why might PC ownership be correlated with u_{i} ? Explain why PC is likely to be related to parent's annual income. Does this mean that parental income is a good instrumental variable for PC? Why or why not.
[30\%] Parents income can be correlated with many causal factors included in u describing different aspects of previous education and access to learning opportunities that affect $G P A$, and also would be correlated to PC ownership, everything else equal, because of the availability of a larger budget.
[30\%] This implies that u and $P C$ would be correlated through income,
[40\%] and therefore $P C$ is endogenous in the equation. In sum, parental income would be correlated with $P C$ (relevance) but also with u (so not exogenous) so it would not be a valid instrument.
(c) Suppose that, four years ago, the university gave grants to buy computers to half of the incoming students, and the students who received the grants were randomly chosen. Explain how you would use this information to construct an instrumental variable for PC.
[40\%] We should construct a binary instrumental variable Z_{i} setting $Z_{i}=1$ if the student received the grant and 0 if not. We expect that Z_{i} should be correlated with $P C_{i}$ because receiving the grant gives incentives to buy a computer, everything else equal, even if not everybody receiving the grant bought this (or other student might have bought a PC without receiving the grant).
[30\%] Then Z_{i} should be also independent with respect any factor in u_{i} because it was randomly assigned, and then it is exogenous.
If you were told

- that among those students who received the grants, 90% of them owned a PC and the group had an average GPA of 3.05 and
- that among those students who did not receive the grants, 75% of them owned a PC and the group had an average GPA of 2.75.
What would your estimate $\hat{\beta}_{1}^{2 S L S}$ be?
[30\%]

$$
\hat{\beta}_{1}^{2 S L S}=\frac{\bar{Y}_{1}-\bar{Y}_{0}}{\bar{X}_{1}-\bar{X}_{0}}=\frac{3.05-2.75}{0.90-0.75}=2 .
$$

(d) Now imagine that the university only gave grants to (randomly selected) students whose parent's family income were lower than a given threshold (and we have a list of students that qualified, but we still do not observe family income). How would you need to modify your model and/or estimation strategy to obtain consistent estimates of β_{1} ?
[30\%] In this case Z_{i} as defined before would be (negatively) correlated with some factors in u_{i} related to parents income, as Z_{i} is assigned differently in terms of this income.
[30\%] However if we construct a binary variable $W_{i}=1$ if students qualified for the grant, $=0$ otherwise, and we include this in the regression with $P C_{i}$,

$$
G P A_{i}=\beta_{0}+\beta_{1} P C_{i}+\beta_{2} W_{i}+v_{i}
$$

[40\%] then Z_{i} now becomes uncorrelated with the remaining factors included in the new error term v_{i} because Z_{i} was assigned independently of them (conditionally on W_{i}) and would be a valid instrument.

