FINAL EXAM. ECONOMETRICS

Answer each question in a different booklet in two hours and a half. All exercises have the same grading.

1. We wish to estimate the following wage equation

$$
\begin{equation*}
\log (\text { wage })=\beta_{0}+\beta_{1} \text { educ }+\beta_{2} \text { exper }+\beta_{3} \text { exper }^{2}+a b i l+u \tag{1}
\end{equation*}
$$

where wage are monthly earnings, educ are years of schooling, exper are years of work experience and u satisfies the usual assumptions of the multiple linear regression model, but we do not observe the ability of the worker (abil).
We have observations for the scores of two tests (test 1 and test 2) which are indicators of the ability (abil). We assume that the scores can be written as

$$
\text { test } 1=\gamma_{1} a b i l+e 1, \quad \operatorname{Cov}(a b i l, e 1)=0
$$

and

$$
\text { test } 2=\delta_{1} a b i l+e 2, \quad \operatorname{Cov}(a b i l, e 2)=0,
$$

where $\gamma_{1}>0$ and $\delta_{1}>0$. Given that it is ability which causes the wage, we can assume that test 1 and test 2 are not correlated with u, and we also assume that $e 1$ and $e 2$ are not correlated with any of the explanatory variables in (1).
(a) Explain why an OLS regression of (1) with omitted abil will produce inconsistent estimates and argue whether test 1 and test 2 are valid instruments.
(b) If we write abil in terms of the score of the first test and we plug in the result in (1), we obtain

$$
\begin{equation*}
\log (\text { wage })=\beta_{0}+\beta_{1} \text { educ }+\beta_{2} \text { exper }+\beta_{3} \text { exper }^{2}+\alpha_{1} \text { test } 1+v \tag{2}
\end{equation*}
$$

Determine the value of α_{1}, write v in terms of u and $e 1$, and prove that test 1 is endogenous in this equation. Would an OLS regression of (2) produce consistent estimates of β_{1} ?
(c) If additionally we assume that $e 1$ and $e 2$ are not mutually correlated, would you use test2 preferably as an additional control variable or as an instrument for test1 in (2)? Explain your answer.
(d) Consider equation (2) and the estimation output of Table 1. Test, if possible, whether test 2 is a relevant instrument for test 1 . Test, if possible, whether test 2 is exogenous. Which information is given by the estimation output about whether test 1 is endogenous or exogenous (assuming that test 2 is exogenous)?

Table 1: Regression table

	$\begin{gathered} (1) \\ \log (\text { wage }) \end{gathered}$	$\overline{(2)}$	(3)	${ }_{\text {(4) }}$	(5)	$\overline{(6)}$
Dependent var.:	$\log (\text { wage })$	$\log (\text { wage })$	$\log (\text { wage })$	test1	test2	$\log (\text { wage })$
educ	$\begin{gathered} 0.0780 \\ (0.00680) \end{gathered}$	$\begin{gathered} 0.0573 \\ (0.00792) \end{gathered}$	$\begin{gathered} 0.0478 \\ (0.00860) \end{gathered}$	$\begin{gathered} 2.637 \\ (0.243) \end{gathered}$	$\begin{gathered} 1.258 \\ (0.116) \end{gathered}$	$\begin{aligned} & 0.00965 \\ & (0.0178) \end{aligned}$
exper	$\begin{gathered} 0.0163 \\ (0.0140) \end{gathered}$	$\begin{gathered} 0.0157 \\ (0.0140) \end{gathered}$	$\begin{gathered} 0.0179 \\ (0.0138) \end{gathered}$	$\begin{gathered} 0.239 \\ (0.398) \end{gathered}$	$\begin{aligned} & -0.290 \\ & (0.222) \end{aligned}$	$\begin{gathered} 0.0145 \\ (0.0154) \end{gathered}$
exper ${ }^{2}$	$\begin{gathered} 0.000152 \\ (0.000588) \end{gathered}$	$\begin{gathered} 0.000165 \\ (0.000591) \end{gathered}$	$\begin{gathered} -0.0000685 \\ (0.000587) \end{gathered}$	$\begin{aligned} & -0.0181 \\ & (0.0167) \end{aligned}$	$\begin{gathered} 0.0307 \\ (0.00916) \end{gathered}$	$\begin{gathered} 0.000194 \\ (0.000656) \end{gathered}$
test1		$\begin{gathered} 0.00579 \\ (0.000984) \end{gathered}$	$\begin{gathered} 0.00468 \\ (0.000999) \end{gathered}$		$\begin{gathered} 0.146 \\ (0.0155) \end{gathered}$	$\begin{gathered} 0.0191 \\ (0.00424) \end{gathered}$
test2			$\begin{gathered} 0.00758 \\ (0.00206) \end{gathered}$	$\begin{gathered} 0.524 \\ (0.0614) \end{gathered}$		
Constant	$\begin{gathered} 5.517 \\ (0.125) \\ \hline \end{gathered}$	$\begin{gathered} 5.214 \\ (0.131) \\ \hline \end{gathered}$	$\begin{gathered} 5.194 \\ (0.128) \\ \hline \end{gathered}$	$\begin{gathered} 47.02 \\ (3.874) \\ \hline \end{gathered}$	$\begin{gathered} 2.672 \\ (2.336) \\ \hline \end{gathered}$	$\begin{gathered} 4.514 \\ (0.239) \\ \hline \end{gathered}$
Observations	935	935	935	935	935	935
R^{2}	0.131	0.162	0.176	0.322	0.267	.

Robust standard errors in parentheses
All regressions are fitted by OLS, except (6), which is fitted by 2 SLS with test 2 as IV for test1.
2. We want to estimate this equation

$$
\text { sleep }=\beta_{0}+\beta_{1} \text { totwrk }+\beta_{2} \text { educ }+\beta_{3} \text { age }+\beta_{4} \text { age } e^{2}+\beta_{5} y n g k i d ~+u
$$

to explain the minutes of sleep at night (per week), sleep, of a sample of workers, males and females, in terms of totwrk (mins worked per week), educ (years of schooling), age (in years) and yngkid (which is a binary variable equal to one if children less than 3 years old are present at home). Assume that u satisfies the usual regression assumptions, including conditional homoskedasticity. Using the appropriate estimation output in Table 2 answer the following questions.
(a) Test whether the same regression model is appropriate for both men and women and whether there is a discrimination against women in the child care duties.
(b) Test whether the effect of age on sleep depends on gender and find the level of age where the expected value of sleep is minimum for women, all other factors fixed.
(c) Construct and interpret a 95% confidence interval for the effect over sleep of an increment of one year of education for a man.
(d) Test if the average effect on sleep of one additional year of age is equal to the effect of one year less of educ for 20 years old males, everything else fixed.

Table 2: Regression table

Dependent var.:	(1)	(2)	(3)	(4)	(5)
	sleep	sleep	sleep	sleep	sleep
totwrk	$\begin{gathered} -0.146 \\ (0.0191) \end{gathered}$	$\begin{gathered} -0.163 \\ (0.0207) \end{gathered}$	$\begin{gathered} -0.182 \\ (0.0293) \end{gathered}$	$\begin{gathered} -0.183 \\ (0.0291) \end{gathered}$	$\begin{gathered} -0.182 \\ (0.0293) \end{gathered}$
educ	$\begin{aligned} & -11.14 \\ & (5.747) \end{aligned}$	$\begin{aligned} & -11.71 \\ & (5.748) \end{aligned}$	$\begin{aligned} & -13.05 \\ & (7.767) \end{aligned}$	$\begin{aligned} & -13.87 \\ & (7.646) \end{aligned}$	$\begin{aligned} & -7.731 \\ & (11.58) \end{aligned}$
age	$\begin{aligned} & -8.124 \\ & (11.86) \end{aligned}$	$\begin{aligned} & -8.697 \\ & (11.79) \end{aligned}$	$\begin{gathered} 7.157 \\ (13.63) \end{gathered}$	$\begin{aligned} & -9.230 \\ & (11.78) \end{aligned}$	
age ${ }^{2}$	$\begin{gathered} 0.126 \\ (0.137) \end{gathered}$	$\begin{gathered} 0.128 \\ (0.136) \end{gathered}$	$\begin{gathered} -0.0448 \\ (0.156) \end{gathered}$	$\begin{gathered} 0.133 \\ (0.136) \end{gathered}$	
yngkid	$\begin{gathered} 17.15 \\ (53.93) \end{gathered}$	$\begin{aligned} & -0.0228 \\ & (53.91) \end{aligned}$	$\begin{gathered} 60.38 \\ (64.52) \end{gathered}$	$\begin{gathered} 39.54 \\ (62.57) \end{gathered}$	$\begin{gathered} 60.38 \\ (64.52) \end{gathered}$
female		$\begin{aligned} & -87.75 \\ & (35.54) \end{aligned}$	$\begin{gathered} 590.5 \\ (541.6) \end{gathered}$	$\begin{aligned} & -226.2 \\ & (162.4) \end{aligned}$	$\begin{gathered} 590.5 \\ (541.6) \end{gathered}$
totwrkf*female			$\begin{gathered} 0.0422 \\ (0.0412) \end{gathered}$	$\begin{gathered} 0.0381 \\ (0.0406) \end{gathered}$	$\begin{gathered} 0.0422 \\ (0.0412) \end{gathered}$
educ*female			$\begin{gathered} 2.847 \\ (11.53) \end{gathered}$	$\begin{gathered} 5.748 \\ (11.01) \end{gathered}$	$\begin{gathered} 2.847 \\ (11.53) \end{gathered}$
age*female			$\begin{aligned} & -37.51 \\ & (24.91) \end{aligned}$		$\begin{aligned} & -37.51 \\ & (24.91) \end{aligned}$
age ${ }^{2 *}$ female			$\begin{gathered} 0.413 \\ (0.289) \end{gathered}$		$\begin{gathered} 0.413 \\ (0.289) \end{gathered}$
yngkid*female			$\begin{aligned} & -178.7 \\ & (117.6) \end{aligned}$	$\begin{aligned} & -128.0 \\ & (109.6) \end{aligned}$	$\begin{aligned} & -178.7 \\ & (117.6) \end{aligned}$
age - educ					$\begin{gathered} 7.157 \\ (13.63) \end{gathered}$
age ${ }^{2}-41 *$ educ					$\begin{gathered} -0.0448 \\ (0.156) \end{gathered}$
Constant	$\begin{aligned} & 3825.4 \\ & (259.3) \end{aligned}$	$\begin{array}{r} 3928.6 \\ (257.9) \\ \hline \end{array}$	$\begin{aligned} & 3648.2 \\ & (323.0) \end{aligned}$	$\begin{aligned} & 4010.0 \\ & (278.7) \end{aligned}$	$\begin{aligned} & 3648.2 \\ & (323.0) \end{aligned}$
Observations	706	706	706	706	706
R^{2}	0.115	0.123	0.131	0.126	0.131

3. Consider a simple regression model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}
$$

and let Z_{i} be a binary instrument for X_{i}.
(a) Show that the 2SLS estimator of β_{1} can be written as

$$
\hat{\beta}_{1}^{2 S L S}=\frac{\bar{Y}_{1}-\bar{Y}_{0}}{\bar{X}_{1}-\bar{X}_{0}}
$$

where \bar{Y}_{1} and \bar{X}_{1} denote the means of Y_{i} and X_{i} (respectively) over that part of the sample with $Z_{i}=1$ and \bar{Y}_{0} and \bar{X}_{0} denote the means of Y_{i} and X_{i} (respectively) over that part of the sample with $Z_{i}=0$.
Hint: denoting by n_{1} the number of observations for which $Z_{i}=1$ and by n_{0} the number of observations for which $Z_{i}=0, n=n_{1}+n_{0}$, we can write

$$
\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}=\frac{1}{n}\left(\sum_{i: Z_{i}=1} Y_{i}+\sum_{i: Z_{i}=0} Y_{i}\right)=\frac{n_{1}}{n} \bar{Y}_{1}-\frac{n_{0}}{n} \bar{Y}_{0}
$$

Consider a simple model to estimate the effects of personal computer (PC) ownership on college grade point average for graduating seniors at a university,

$$
G P A_{i}=\beta_{0}+\beta_{1} P C_{i}+u_{i}
$$

where $P C_{i}$ is a binary variable indicating PC ownership.
(b) Why might PC ownership be correlated with u_{i} ? Explain why $P C_{i}$ is likely to be related to parent's annual income. Does this mean that parental income is a good instrumental variable for $P C_{i}$? Why or why not.
(c) Suppose that, four years ago, the university gave grants to buy computers to half of the incoming students, and the students who received the grants were randomly chosen. Explain how you would use this information to construct an instrumental variable for $P C_{i}$.
In particular, if you were told

- that among those students who received the grants, 90% of them owned a PC and the group had an average GPA of 3.05 and
- that among those students who did not receive the grants, 75% of them owned a PC and the group had an average GPA of 2.75 .
What would your estimate $\hat{\beta}_{1}^{2 S L S}$ be?
(d) Now imagine that the university only gave grants to (randomly selected) students whose parent's family income were lower than a given threshold (and we have a list of students that qualified, but we still do not observe family income). How would you need to modify your model and/or estimation strategy to obtain consistent estimates of β_{1} ?

SOME CRITICAL VALUES: $Z_{0.90}=1.282, Z_{0.95}=1.645, Z_{0.975}=1.96, \chi_{2,0.95}^{2}=5.99, \chi_{2,0.975}^{2}=$ $7.378, \chi_{3,0.95}^{2}=7.815, \chi_{3,0.975}^{2}=9.348, \chi_{4,0.95}^{2}=9.488, \chi_{4,0.975}^{2}=11.143, \chi_{5,0.95}^{2}=11.071$, $\chi_{5,0.975}^{2}=12.833, \chi_{6,0.95}^{2}=12.592, \chi_{6,0.975}^{2}=14.449$, where $\mathbb{P}\left(Z \leq Z_{\alpha}\right)=\alpha$ and $\mathbb{P}\left(\chi_{m}^{2} \leq \chi_{m, \alpha}^{2}\right)=$ α, Z is distributed as a standard normal with zero mean and unit variance, and χ_{m}^{2} as a chi-square with m degrees of freedom.

