
Auctions with Heterogeneous Entry Costs�

Diego Morenoy John Woodersz

This version: April 25, 2008

Abstract

It is well known that in standard auctions where buyers have independent

private values and homogeneous entry costs a reserve price equal to the seller�s

value (and no entry fee) maximizes social surplus and seller revenue, and leaves

bidders with no surplus. Further, in mixed strategy entry equilibria social sur-

plus and seller revenue decrease with the number of potential bidders. In con-

trast, we show that when entry costs are heterogeneous the revenue maximizing

reserve price is typically above the seller�s value, an appropriate entry fee (and

a reserve price equal to the seller�s value) generates even more revenue, and

bidders capture informational rents. Further, seller revenue and social surplus

may either increase or decrease with the number of potential bidders. However,

asymptotic seller revenue is the entire social surplus.
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1 Introduction

A classic result of the auction literature is that in a standard auction with an ex-

ogenously �xed number of bidders who have independent private values, the optimal

(i.e., revenue maximizing) reserve price is above the seller�s value, and is independent

of the number of bidders �see Riley and Samuelson (1981) and Myerson (1981). In

many instances, however, the number of bidders is the result of costly entry decisions.

As noted by Milgrom (2004), �... auctions for valuable yet highly specialized assets

often fail because of insu¢ cient interest by bidders ... buyers are naturally reluctant

to begin an expensive, time-consuming evaluation of an asset when they believe that

they are unlikely to win at a favorable price.�Entry decisions may thus be a¤ected by

the auction format (including the reserve price), making the number number of bid-

ders endogenous. Indeed, McAfee and McMillan (1987) and Levin and Smith (1994)

have shown that the endogenous entry of bidders has important implications for the

seller�s choice of a reserve price. Speci�cally, if all bidders have the same entry cost,

then the optimal reserve price is the seller�s value and an entry fee is not a useful

instrument to increase seller revenue.

In this paper we study optimal reserve prices and entry fees in standard auctions

with endogenous entry, but where bidders have heterogenous entry costs. In the sale

of a �rm, for example, prospective buyers may have di¤erent concerns regarding the

regulatory restrictions they face; discovering the value of the �rm for sale may involve

substantially di¤erent costs for di¤erent bidders, as some bidders may have to seek

approval by regulatory authorities while others may not face such constraints. Our

model is identical to that of McMillan (1987) and Levin and Smith (1994), except

that prior to deciding whether to enter the auction each bidder privately observes her

entry cost, which is an independent draw from a common distribution. In the model,

bidders, upon observing their entry costs, simultaneously choose whether to enter the

auction. Each bidder who enters the auction observes his value for the object and

then bids.

Heterogeneity in entry costs alters many of the conclusions obtained for the ho-

mogenous entry cost case. Speci�cally, we show that the optimal reserve price is

typically above the seller�s value, although it is below the reserve that is optimal

when the number of bidders is �xed. In addition, the optimal reserve price depends
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on the number of bidders as well as the distribution of values and entry costs. Fur-

ther, entry fees provide a valuable instrument to rise seller revenue: when an entry fee

is feasible, then it is optimal to set a reserve equal to the seller�s value in conjunction

with a positive entry fee.

In order to understand the intuition for our results, it is useful to review the

results and intuition when entry costs are homogeneous. Let us assume for simplicity

that the seller�s value for the object is zero. A key result in this setting is that in a

standard auction with a reserve price equal to zero the contribution to social surplus

of an additional bidder is exactly equal to the bidder�s expected utility to entering.1

Thus, when entry costs are homogeneous, the interests of a entrant and society are

aligned: a bidder enters only if her expected utility to entering is above her entry

cost; that is, if her contribution to social surplus is positive. Since bidders enter

the auction so long as their contribution to social surplus is positive, the number

of entering bidders maximizes social surplus provided there are su¢ ciently many

bidders.2 In equilibrium, the bidder surplus is competed away (a bidder is indi¤erent

between entering or not), and therefore the seller captures the entire social surplus.

Hence a reserve price equal to zero maximizes both seller revenue and social surplus,

regardless of the distribution of values and the number of bidders (provided there are

su¢ ciently many).

We show that when entry costs are heterogeneous a version of the key result

described above also holds: in a standard auction with a reserve price equal to zero

the contribution to social surplus of a marginal increase of the equilibrium entry

threshold is proportional to the bidder�s expected utility; that is, the interests of

bidders and society are also aligned when entry costs are heterogenous. Consequently,

a standard auction with a zero reserve maximizes social surplus whether entry costs

are homogeneous or heterogeneous. With heterogeneous entry costs, however, not

all bidder surplus is competed away by entry: whereas the net expected utility of

a bidder with an entry cost equal to the equilibrium threshold is exactly zero, the

1A version of this result is established in Engelbrech-Wiggans (1993)�s Proposition 1, and is also

observed in both MM and LS.
2The maximum social surplus di¤ers if we consider asymmetric equilibria where some bidders

enter and others stay out of the auction, or we restrict attention to symmetric equilibria where all

bidders enter with the same probability �see section 3.
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expected entry cost of an entering bidder is below the equilibrium threshold, and

therefore bidders capture a positive share of the surplus. Hence, even though setting

a positive reserve price reduces total surplus, it may increase the seller�s share of

social surplus and therefore may increase revenue.

Thus, when entry costs are heterogeneous the optimal reserve price may be posi-

tive (i.e., above the seller�s value). Indeed, we show this is the case when the bidders�

values are uniformly distributed, regardless of the distribution of entry costs. Inter-

estingly, the optimal reserve is always below the reserve price that is optimal when

the number of bidders is exogenously �xed. In addition, when the optimal reserve

price is above the seller�s value, then an even greater revenue can be obtained by em-

ploying an appropriate entry fee and setting the reserve price to zero. (In contrast,

it is well-known that an entry fee is equivalent to a reserve price when the number of

bidders is �xed, and that the optimal entry fee is zero when bidders have homogenous

entry costs.) Further, the optimal reserve price depends on the number of bidders,

as well as on the distribution of values and entry costs.

There is another important di¤erence between homogeneous and heterogeneous

entry costs. For homogeneous entry costs, LS show that seller revenue decreases

with the number of bidders in an entry equilibrium in mixed strategies. We describe

simple examples that show that a direct extension of this result does not hold when

entry costs are heterogeneous: even if the number of bidders is such that a bidder

enters with probability less than one, an increase in the number of bidders may either

increase or decrease seller revenue depending upon the distribution of values and

entry costs.

Equilibrium with homogenous and heterogeneous entry costs are, however, closely

related as the number of bidders grows large. In particular, asymptotic seller revenue

is the same when (i) bidders have homogenous entry costs, c > 0; and (ii) when

bidders have heterogenous entry costs and the lower bound of entry costs is c. In

other words, heterogeneity of entry costs does not matter asymptotically. We also

show that if bidders�values are uniformly distributed and the lower bound of entry

costs is zero, then seller revenue approaches the maximum surplus as the number of

bidders becomes large.

Other models of auctions with endogenous entry have been studied in the litera-
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ture. Samuelson (1985) studies a procurement sealed-bid auction with entry where

bidders have a homogeneous entry cost, but make entry decisions after observing

their procurement costs. He shows that when the reserve is equal to the buyer�s

value, equilibrium is socially optimal. He also shows by means of examples that an

increase in the number of bidders may either an increase or decrease procurement

costs. Analogous results are obtained by Menezes and Monteiro (2000) who study

the equilibria of �rst- and second-price sealed-bid auctions in this framework �see

also Tan and Yilankaya (2007). Kaplan and Sela (2003) study auctions where entry

costs are private information, but the bidders�values are commonly known. Green

and La¤ont (1984) study the existence of equilibrium in a model where, as in our

setting, both entry costs and values are private information, but they assume, as

in Samuelson (1985), that a bidder makes entry decisions having observed both her

entry cost and her value.

In a concurrent paper, Lu (2007) studies optimal entry fees in a model similar to

ours. He shows that the seller�s optimal auction is a second-price sealed-bid auction

with an entry fee, and provides an interesting characterization of optimal entry fees.

While a seller can generally set a reserve price, in many settings it is not feasible

for the seller to set an entry fee. Characterizing the optimal reserve price is di¢ cult

as, unlike entry fees, reserve prices not only in�uences the bidders�entry decisions

but also reduce the e¢ ciency of the auction. In Internet auctions a bidder�s cost of

discovering his value is the opportunity cost of his time, and it varies signi�cantly

across bidders. Since reserve prices are commonly used in such auctions (and entry

fees are not possible), our results are useful to understanding the e¤ect of reserve

prices in empirical studies of reserve prices in Internet auctions using either naturally

occurring data or data obtained from �eld experiments �e.g., Reiley (2006).

The paper is organized as follows. In Section 2 we layout the basic setting. Section

3 reviews the results for homogenous entry costs. Section 4 presents our results for

heterogenous entry costs. Section 5 concludes. Proofs are in the Appendix.
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2 Preliminaries

Consider a market for a single object for which there are N risk-neutral bidders and a

risk-neutral seller. In this market the object is allocated using an unspeci�ed standard

auction with a reserve price. Each bidder must decide whether to enter the auction,

and thereby incur an entry cost. A bidder who enters the auction learns her value

(and perhaps the number of bidders who entered the auction), and then bids. The

bidders� values X1; : : : ; XN are independently and identically distributed on [0; !]

according to an increasing and di¤erentiable c.d.f. F with an increasing hazard rate.

The seller�s value for the object is zero.

In order to focus on the analysis of the �entry game,�we assume throughout that

bidding strategies conform to the assumptions required to apply the Revenue Equiv-

alence Principle; that is, we assume that following entry decisions, for each reserve

price the bidding strategies form an increasing symmetric equilibrium of the auction

such that the expected payment of a bidder with value zero is zero � see Myerson

(1981), Riley and Samuelson (1981). (It is well-known that the Revenue Equivalence

Principle applies even when there is uncertainty about the number of bidders in the

auction, provided that bidders have symmetric expectations � see Krishna (2002),

Section 3.2.2, whose notation we follow closely.) Under this assumption, the seller�s

revenue and the bidders�expected utilities following entry decisions can be calculated

as if the auction were a second-price sealed-bid auction. Thus, if the reserve price is

r 2 [0; !] and exactly n 2 f1; : : : ; Ng bidders enter the auction, then seller revenue is

�(r; n) = n

�
r(1� F (r))F n�1(r) + (n� 1)

Z !

r

y(1� F (y))F n�2(y)f(y)dy
�
;

and the expected utility of a bidder is

u(r; n) =

Z !

r

�Z y

r

F (x)n�1dx

�
f(y)dy:

Also, the gross social surplus, i.e., the social surplus ignoring entry costs, can be

calculated as

s(r; n) =

Z !

r

ydF n(y):

Note that

s(0; n) = E(Y
(n)
1 );
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where for n 2 f1; : : : ; Ng; Y (n)1 is the highest order statistic. It is easy to see that

�(r; n) is increasing in n; u(r; n) is decreasing in both r and n; and s(r; n) is decreasing

in r and increasing in n. The convention s(0; 0) = 0 will be useful in what follows.

Proposition 1 below establishes that in a standard auction with a zero reserve

price and n bidders the expected utility of each bidder is equal to the gross social

contribution of the n-th bidder. (We provide a simple proof in the Appendix. A

version of this formula is established in Proposition 1 of Engelbrecht-Wiggans (1993).)

As will be seen later, this fact is key to understanding the intuition for our results.

Proposition 1. For n 2 f1; : : : ; Ng: u(0; n) = s(0; n)� s(0; n� 1):

It will be useful to calculate the expected revenue of the seller and the expected

utility of a bidder when the number of bidders in the auction follows a binomial

distribution B(N; p); where p is the probability that a single bidder enters, and pNn (p)

is the probability that exactly n 2 f0; 1; : : : ; Ng bidders enter. The expected revenue
of the seller is

�(r; p) =
NX
n=1

pNn (p)�(r; n); (1)

and the expected utility to a bidder entering the auction is

U(r; p) =
N�1X
n=0

pN�1n (p)u(r; n+ 1):

It is easy to see that U(r; p) is decreasing in p: If p00 > p0, then B(N; p00) �rst

order stochastically dominates B(N; p0); and therefore since u(r; n) is decreasing with

respect to n; we have U(r; p00) < U(r; p0).

3 Homogenous entry costs

In this section we derive existing results and simple extensions that identify the

optimal reserve price (i.e., the reserve price that maximizes seller revenue) for the

case of homogenous entry costs. Assume that all bidders have the same �xed entry

cost c > 0: We assume that u(0; N) < c; i.e., when the reserve price is zero, if all N

bidders enter, then the expected utility of each bidder is less than c. This assumption

rules out the uninteresting case where every bidder enters the auction with probability

6



one. We further assume that c < u(0; 1), which rules out an equilibrium in which no

bidder enters.

In this setting McAfee and McMillan (1987) establish that in a pure strategy

entry equilibrium of a �rst-price sealed-bid auction with a zero reserve price (i) the

maximum social surplus is realized (i.e., the optimal number of bidders enters the

auction and the object is allocated to the bidder with the maximum value), and (ii)

the seller captures the entire surplus; hence (iii) the optimal reserve price is zero.

Levin and Smith (1994) show that results analogous to (i)-(iii) hold in a symmetric

mixed strategy equilibria of any standard auction. These results are easily derived

in our setting, and extended to any standard auction in the case of McAfee and

McMillan (1987)�s results. This exercise will help provide intuition for our results for

the perhaps more realistic case where entry costs are heterogenous.

The maximum social surplus that can be achieved by any mechanism with a �xed

number n of bidders is

w(n) = E(Y
(n)
1 )� nc = s(0; n)� nc:

A standard auction with a zero reserve price attains this maximum. Write w� =

maxn2f0;1;:::;Ngw(n):

Since u(0; n) = s(0; n)� s(0; n� 1) by Proposition 1, then the social contribution
of the n-th bidder is

w(n)� w(n� 1) = s(0; n)� s(0; n� 1)� c

= u(0; n)� c.

Since u(0; n) is decreasing in n this contribution is decreasing in n.

Consider the incentives of bidders when they sequentially decide whether to enter

a standard auction with a zero reserve price. The n-th bidder enters if her payo¤ to

entering is at least her cost, i.e., if

u(0; n)� c � 0. (2)

As shown above, the left hand side of this expression is just the social contribution

of the n-th bidder. Hence, when the reserve price is zero a bidder enters if and only

if her entry raises social surplus. Therefore in a pure strategy entry equilibrium the
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number of entering bidders n� maximizes social surplus; i.e., w(n�) = w�: If we ignore

that n� must be an integer, then n� satis�es (2) with equality, and bidders capture

none of the surplus.

This argument establishes that a standard auction with a zero reserve price max-

imizes social surplus and, moreover, the seller captures the entire social surplus. A

positive reserve price reduces social surplus and, because seller revenue is at most the

social surplus, also reduces seller revenue. Hence the optimal reserve price is zero.

The key insight above was that the private and social bene�t of the entry of a

bidder coincide in a standard auction with a zero reserve price. The same logic applies

to symmetric entry equilibria in mixed strategies. If each of N bidders enters with

probability p, then the number of bidders follows the binomial distribution B(N; p)

and the maximum (constrained) social surplus that can be achieved by any mechanism

is

W (p) =
NX
n=1

pNn (p)s(0; n)�Npc: (3)

A standard auction with a zero reserve price attains this maximum. Write W � =

maxp2[0;1]W (p). Note that W � is a �constrained�maximum surplus; i.e., it is the

maximum surplus when all bidders enter with the same probability.3

Since u(0; n) = s(0; n)� s(0; n� 1), then we have4

W 0(p) = N

 
NX
n=1

pN�1n�1 (p)s(0; n)�
N�1X
n=1

pN�1n (p)s(0; n)� c
!

= N

 
N�1X
n=0

pN�1n (p)u(0; n+ 1)� c
!

= N(U(0; p)� c);

i.e., the marginal social contribution of an increase in the probability of entry is

proportional to the payo¤ of an entering bidder. In a symmetric mixed strategy entry

equilibrium bidders are indi¤erent between entering and not;5 i.e., bidders enter with

3It is easy to show that our assumption u(0; N) < c < u(0; 1) implies the number of bidders n�

that maximizes social surplus w(n) satis�es 1 < n� < N: This in turn implies that if bidders use a

symmetric entry rule, then social surplus is below w�: Hence w� > W �.
4A version of this formula can be found in Milgrom (2004)�s proof of Theorem 6.5.
5It is easy to see that a symmetric mixed-strategy equilibrium p� exists, is unique, and satis�es

p� > 0.
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a probability p� satisfying

U(0; p�)� c = 0:

Hence W 0(p�) = 0. Since U is decreasing in p, then W 00(p) < 0, i.e., W is a concave

function. ThereforeW � = W �(p�); i.e., a symmetric mixed strategy entry equilibrium

maximizes the social surplus. Since the seller captures all the social surplus, the

optimal reserve price is zero.

Since the seller captures the entire social surplus with a zero reserve price, whether

bidders follow a symmetric mixed strategy equilibrium or a pure strategy equilibrium,

there is no advantage to the seller to setting an entry fee.6

These results are summarized in the Proposition below.

Proposition (Homogeneous entry costs �McAfee and McMillan (1987), Levin and

Smith (1994).) In a standard auction with a reserve price equal to zero, if bidders fol-

low a (symmetric mixed) pure strategy entry equilibrium, the (constrained) maximum

social surplus is realized and is captured by the seller. Hence the optimal reserve price

and the optimal entry fee are zero.

4 Heterogenous entry costs

In this section we study the general case where bidders have heterogenous entry costs.

Speci�cally, each bidder i has a privately known entry cost Zi. Bidders�entry costs

Z1; : : : ; ZN are independently and identically distributed on R+ according to a c.d.f.
H with support [c; �c]; where 0 � c < �c � 1: As in the homogenous entry cost case
(i.e., the case where H is degenerate), we assume that u(0; N) < �c and c < u(0; 1)

in order to rule out uninteresting equilibria. For simplicity, we assume also that H is

increasing, di¤erentiable, and satis�es H (c) = 0:

Under these assumptions, an entry strategy for a bidder can be described by a

number t 2 [c; �c] indicating the threshold (the maximum entry cost) for which the

6However, our argument ignores that in the pure strategy equilibria studied by McAfee and

McMillan (1987) the number of entrants is an integer, and therefore bidder surplus will be typically

positive, and may be nonnegligible. When this is the case, an entry fee equal to bidder surplus

allows the seller to capture the entire social surplus. If an entry fee is not feasible, then the optimal

reserve price is positive.
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bidder enters the auction; that is, the bidder enters if her entry cost is less than t; and

does not enter if it is greater than t �whether the bidder enters when her entry cost

is exactly t is inconsequential.7 If all bidders employ the same threshold t, then the

number of bidders in the auction is distributed according to the binomial distribution

B(N; p) where p = H(t).

Consider any standard auction with a reserve price r 2 [0; !]: A symmetric

(Bayes perfect) entry equilibrium is a threshold t 2 [c; �c] such that for all z 2 [c; �c]:
U(r;H(t)) > z implies t > z; and U(r;H(t)) < z implies t < z; i.e., in a symmetric

entry equilibrium t a bidder enters if her expected utility to entering is above her

entry cost, and does not enter if it is below.

We now de�ne a mapping that will describe the symmetric entry equilibrium

threshold of a standard auction for every reserve price r 2 [0; !]. This mapping,

t� : [0; !] ! [c; �c]; is given by t�(r) = c if U(r; 0) � c; and by the unique solution to
the equation

t = U(r;H(t)) (4)

if U(r; 0) > c. The mapping t�(�) is a continuous function on [0; !]. Denoting by r̂
the unique solution to

U(r; 0) = c;

then t�(�) is decreasing on [0; r̂] and it is equal to c for r 2 [r̂; !] �see Lemma 1 in
the Appendix.

Proposition 2 establishes that a standard auction with a reserve price has a unique

symmetric entry equilibrium.8

Proposition 2. A standard auction with a reserve price r 2 [0; !] has a unique
symmetric entry equilibrium, given by t = t�(r).

Assume that each bidder enters when her entry cost is less than t 2 [c; �c]. Then
the social surplus generated in a standard auction with a reserve price r 2 [0; !] is

Ŵ (r; t) =

NX
n=1

pNn (H(t))s(r; n)�Nc(t); (5)

7In general, entry decisions are described by a mapping from [c; �c] into [0; 1] indicating for each

entry cost the probability with which the buyer enters the auction. When H is atomless, however,

it is without loss of generality to restrict attention to entry strategies described by a threshold.
8Tan and Yilankaya (2006) obtain an analogous result in Samuelson�s model.
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where

c(t) =

Z t

c

zdH(z)

is the expected entry cost incurred by each bidder. Also the maximum social surplus

that can be achieved by any mechanism is Ŵ (0; t): Write Ŵ � = maxt2[c;�c] Ŵ (0; t) for

the �constrained�maximum social surplus; i.e., Ŵ � is the maximum surplus if we

restrict attention to symmetric entry rules.

Recall that a standard auction with a reserve price of zero maximizes social sur-

plus when entry costs are homogeneous. Proposition 3 establishes that a standard

auction with a reserve price of zero also maximizes social surplus when entry costs

are heterogeneous. In particular, the symmetric entry equilibrium threshold t�(0)

induces the socially optimal entry; that is, Ŵ (0; t�(0)) = Ŵ �:

Proposition 3. A standard auction with a reserve price equal to zero maximizes

social surplus, i.e., Ŵ (0; t�(0)) = Ŵ �.

In a standard auction with reserve price r the expected surplus of a bidder isZ t�(r)

c

(t�(r)� z)dH(z):

Hence if the reserve price r is below r̂, so that t�(r) > c, then each bidder�s expected

surplus is positive, which we state as the following result.

Proposition 4. In a standard auction with a reserve price r 2 [0; r̂) bidders capture
a positive surplus. Hence seller revenue is less than the social surplus.

In contrast, when entry costs are homogenous, bidder surplus is zero for any

reserve price set by the seller. This di¤erence between the homogeneous and het-

erogenous entry cost cases has important implications for the seller�s optimal reserve,

as we see shall shortly.

When bidders have heterogeneous entry costs, seller revenue in a standard auction

with a reserve price r 2 [0; !] is �(r;H(t�(r))): An optimal reserve price r� satis�es
r� 2 argmaxr �(r;H(t�(r))): It is well known that when the number of bidders is
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exogenously given, then the optimal reserve price �r is positive, and is the solution to

the equation

r =
1� F (r)
f(r)

; (6)

independently of the number of bidders present in the auction �see Riley and Samuel-

son (1981) and Myerson (1981).

Proposition 5 establishes that an optimal reserve price r� is strictly below �r, since

the seller has an incentive to induce additional entry through a lower reserve price.

Unlike in the homogeneous entry cost case where the optimal reserve price is zero,

when entry costs are heterogeneous the optimal reserve price may be positive. This

is the case if bidders�values are uniformly distributed, for arbitrary distributions of

entry costs H.

Proposition 5. In a standard auction an optimal reserve price r� satis�es 0 � r� <
�r. Moreover, if values are uniformly distributed, then 0 < r�.

It is worth discussing why the optimal reserve price may be positive. With ho-

mogenous entry costs, the seller captures the entire social surplus and hence optimally

sets the reserve to zero in order to maximize social surplus. While a zero reserve also

maximizes social surplus when entry costs are heterogenous (Proposition 3), the seller

no longer captures the entire surplus. Hence, although setting a positive reserve price

reduces social surplus, the seller is better o¤ if it generates a distribution of the social

surplus su¢ ciently more favorable to him.

Entry fees

Assume that the seller can set both an anonymous entry fee (or subsidy) as well

as a reserve price.9 Proposition 6 establishes that an entry fee enables the seller to

obtain more revenue than he can obtain with a reserve price alone. In fact, when the

seller can set both an entry fee and a reserve price, then the optimal reserve price

is zero (the seller�s value). Thus, when bidders have heterogenous entry costs, an

entry fee is a more e¤ective instrument to increase seller revenue than a reserve price.

In contrast, it is well-known that when the number of bidders is exogenous, reserve

9Of course, often it is not possible for the seller to charge an entry fee. For example, none of the

Internet auction websites allow the seller to charge an entry fee.
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prices are equivalent to entry fees. And, as established earlier, when the number of

bidders is endogenous but entry costs are homogeneous, the optimal entry fee and

reserve price are both zero.

Proposition 6. In a standard auction, a zero reserve price and an optimal entry fee

yields a greater seller revenue than a positive reserve price and no entry fee.

The intuition for this result is simple: if the reserve price is positive then the

seller can reduce the reserve price to zero and at the same time raise the entry fee

so that the expected utility to a bidder to entering the auction is unchanged. This

entry fee (combined with the zero reserve) induces the same entry by bidders without

incurring the ex-post ine¢ ciencies of a positive reserve price. Seller revenue rises

since social surplus rises, while bidder surplus is unchanged. Propositions 5 and 6

imply the following.

Proposition 7. In a standard auction, if values are uniformly distributed and H is

arbitrary, then a zero reserve price with a positive entry fee is optimal.

It�s easy to see that a result analogous to Proposition 3 holds for a standard auction

with an entry fee and a reserve price; namely, that social surplus is maximized when

both the entry fee and the reserve price are both zero. Although the outcome with

a positive entry fee and zero reserve is ex-post e¢ cient, a positive entry fee induces

less entry than would be socially optimal.

Market Thickness

In this section we study the impact on seller revenue and social surplus of an

increase in the number of bidders. When entry costs are homogeneous, Levin and

Smith (1994) show that seller revenue and social surplus (which in this case coincide)

decrease as the number of bidders increases when symmetric entry equilibrium is in

mixed strategies. Simple examples show that a direct extension of the result of LS to

the case of heterogeneous entry costs does not hold: whether seller revenue and social

surplus increase or decrease with the number of bidders depends on the distribution

of entry costs and values. For example, if values are uniformly distributed on [0; 1],

then as the number of bidders increases from N = 1 to N = 2 both the social surplus
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and seller revenue increase when the distribution of entry costs is uniform on [0; 1];

but decrease when it is uniform on [:49; :5]:

We show that as the number of bidders N grows large, the asymptotic properties

of equilibrium in LS are closely related to the asymptotic properties of equilibrium

with heterogeneous entry costs. In particular, when bidders have a homogeneous

entry cost, c > 0, asymptotic seller revenue and asymptotic social surplus are the

same as when bidders have heterogenous entry costs and the lower bound of the

support of entry costs is c = c. Consequently, when entry cost are heterogeneous,

asymptotic seller revenue is invariant to changes in the distribution of entry costs that

preserve the lower bound of its support. Further, asymptotic seller revenue equals

asymptotic social surplus, and hence asymptotic bidder surplus is zero. In addition,

a zero reserve is asymptotically optimal (i.e., seller revenue with a zero reserve is

asymptotically equal to seller revenue with an optimal reserve). These results are

established in Proposition 8 below.

For each N; denote by W �
N the maximum constrained social surplus when all bid-

ders have the same entry cost c > 0; and write ��N for the seller revenue in a standard

auction with an optimal reserve price. Recall that W �
N = �

�
N for each N �Levin and

Smith (1994). Likewise, for each N denote by Ŵ �
N the maximum constrained social

surplus when the bidders�(heterogenous) entry cost are independent draws from a

c.d.f. H; and write �̂�N for seller revenue in a standard auction with an optimal

reserve price. Recall that Ŵ �
N > �̂

�
N by Proposition 4.

Proposition 8. If c = c > 0; then asymptotic seller revenue and asymptotic social

surplus are positive and the same, whether bidders� entry costs are heterogeneous

or homogeneous; i.e., limN!1W
�
N = limN!1�

�
N = limN!1 Ŵ

�
N = limN!1 �̂

�
N .

Further, a zero reserve price is asymptotically optimal.

An interesting case not covered by Proposition 8 is when the lower bound of the

support of entry costs is zero, i.e., c = 0. Proposition 9 below establishes that if

values are uniformly distributed, then both asymptotic seller revenue and asymptotic

social surplus equal ! (the upper bound of the support of values). An immediate

implication of this result is that the total entry costs incurred by bidders, as well as

total bidder surplus, are both asymptotically zero. As when c > 0, a zero reserve is

asymptotically optimal.
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Proposition 9. If the lower bound of the support of entry costs is zero, i.e., c = 0,

and values are distributed uniformly on [0; !], then asymptotic seller revenue (and

asymptotic social surplus) is !, i.e., limN!1 �̂
�
N = limN!1 Ŵ

�
N = !. Further, a

zero reserve price is asymptotically optimal.

As mentioned above, for homogeneous entry costs LS show that seller revenue

decreases with the number of bidders. As illustrated in Figure 1 below, when entry

costs are heterogeneous one can �nd examples where seller revenue increases with the

number of bidders. Assume that values are distributed uniformly on [0; 1]. The top

curve shows seller revenue as a function of the number of bidders when all bidders

have an entry cost of 1
8
. Consistent with the LS result, seller revenue decreases with

the number of bidders. The bottom curve is the graph of seller revenue as a function

of the number of bidders when entry costs are distributed uniformly on [1
8
; 1
2
]. It shows

that seller revenue increases with the number of bidders. The two curves approach

each other as the number of bidders becomes large �see Proposition 8.

Figure 1 goes here.

5 Conclusions

The conclusions obtained when entry costs are homogeneous, namely that (i) the

optimal reserve price is zero, (ii) social surplus is maximized at the optimal reserve,

and (iii) the seller captures the entire social surplus, are not robust to the introduction

of heterogeneity in entry costs. In the generic case of heterogeneous entry costs,

we rather �nd that (I) the optimal reserve price may be positive � e.g., if values

follow a uniform distribution; (II) the social surplus may be below the (constrained)

maximum surplus � because a positive reserve price both induces less entry than

would be socially optimal and generates ex-post ine¢ cient outcomes with positive

probability; and (III) seller revenue is less than the social surplus �heterogeneity

of entry costs generates informational rents, allowing bidders to capture a positive

share of the social surplus. While auctions are of greatest interest for small number

of bidders, as the number of bidders grows large, asymptotic seller revenue depends

only on the lower bound of entry costs c and is the same as when entry costs are

15



homogeneous and equal to c.

6 Appendix

Proof of Proposition 1: For n > 1, by interchanging the order of integration we

obtain

u(0; n) =

Z !

0

�Z y

0

F (x)n�1dx

�
f(y)dy

=

Z !

0

�Z !

x

f(y)dy

�
F (x)n�1dx

=

Z !

0

(1� F (x))F (x)n�1dx:

Integrating by parts we getZ !

0

F (x)ndx = xF n(x)j!0 �
Z !

0

nxF (x)n�1f(x)dx

= ! � E
�
Y
(n)
1

�
:

Hence

u(0; n) =

Z !

0

F (x)n�1dx�
Z !

0

F (x)ndx

=
�
! � E

�
Y
(n�1)
1

��
�
�
! � E

�
Y
(n)
1

��
= s(0; n)� s(0; n� 1):

For n = 1 we have

u(0; 1) =

Z !

0

yf(y)dy = E(Y (1)) = s(0; 1) = s(0; 1)� s(0; 0): �

Henceforth assume that entry costs are heterogeneous. In order to prove Propo-

sition 2 we begin by establishing some properties of the mapping t�.

Lemma 1: The mapping t� is a continuous function on [0; !]. Further, it is decreas-

ing and satis�es �c > t�(r) > c on [0; r̂); where r̂ 2 (0; !] is the unique solution to the
equation U(r; 0) = c:
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Proof: Let r 2 [0; !]; we have

U(r; 0) =
N�1X
n=0

pN�1n (0)u(r; n+ 1) = u(r; 1):

(Note that pN�10 (0) = 1; and pN�1n (0) = 0 for n 2 f1; : : : ; N � 1g:) Since u(0; 1) > c
by assumption, u(!; 1) = 0 � c; and U(�; 0) � u(�; 1) is continuous and decreasing on
[0; !]; the equation U(r; 0) = c has a unique solution, r̂ 2 (0; !]:
For r 2 [0; r̂) we have U(r; 0) > c; and

U(r; 1) =
N�1X
n=0

pN�1n (1)u(r; n+ 1) = u(r;N) � u(0; N) < �c:

(Note that pN�1n (1) = 0 for n 2 f0; 1; : : : ; N � 2g and pN�1N�1(1) = 1:) Hence, since

U(r;H(�)) is continuous (because H is absolutely continuous) the equation

t = U(r;H(t))

has a solution on [c; �c]; and since U(r;H(�)) is decreasing on [c; �c] (because U(r; p)
is decreasing in p and H is increasing), there is a unique solution. Therefore the

function t�(�) is well de�ned, and since U(r;H(�)) is continuous (because each u(�; n)
for n 2 f1; :::; ng is continuous), then t�(�) is also continuous. We show that t�(�)
is decreasing on [0; r̂). Let r0; r00 2 [0; r̂) be such that r00 > r0: Write t�(r0) = t0;

and t�(r00) = t00: Suppose by way of contradiction that t00 � t0: Since U(r;H(t)) is

decreasing in both r and t; then we have

t0 = U(r0; H(t0)) > U(r00; H(t00)) = t00;

which is a contradiction.

Let r 2 [0; r̂): We show that t�(r) > c. Suppose that t�(r) = c: Then

c = t�(r) = U(r;H(t�(r))) = U(r;H(c)) = U(r; 0) = u(r; 1) > c;

which is a contradiction. We show that t�(r) < �c. Suppose that t�(r) = �c: Then

�c = t�(r) = U(r;H(t�(r))) = U(r;H(�c)) = U(r; 1) = u(r;N) � u(0; N) < �c;

which is a contradiction. �
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Proof of Proposition 2: Consider a standard auction with a reserve price r 2 [0; !]:
We show that t�(r) is the unique symmetric entry equilibrium. If r 2 [r̂; !]; clearly
t�(r) = c is the unique symmetric entry equilibrium. If r 2 [0; r̂); then t�(r) is a
symmetric entry equilibrium. We show that no other symmetric entry equilibrium

exists. By Lemma 1 c < t�(r) < �c: Let �t 2 [c; t�(r)):We show that �t is not a symmetric
entry equilibrium. Since U(r;H(�)) is decreasing we have

U(r;H(�t)) > U(r;H(t�(r))) = t�(r):

Therefore for �t < z < t�(r) we have z < U(r;H(�t)): Hence �t is not a symmetric entry

equilibrium. An analogous argument establishes that no �t 2 (t�(r); �c] is a symmetric
entry equilibrium either. �

Proof of Proposition 3: Di¤erentiating Ŵ (0; t) yields

Ŵ 0(0; t) =
NX
n=1

dpNn (H(t))

dt
s(0; n)�Nth(t):

For n � N � 1 we have

dpNn (H(t))

dt
= N(pN�1n�1 � pN�1n )h(t);

and
dpNN(H(t))

dt
= NpN�1N�1h(t):

(All binomial probabilities are calculated for p = H(t).) Substituting these expres-

sions and using Proposition 1, we have

Ŵ 0(0; t) = Nh(t)

 
pN�1N�1s(0; N) +

N�1X
n=1

(pN�1n�1 � pN�1n )s(0; n)� t
!

= Nh(t)

 
N�1X
n=0

pNn u(0; n+ 1)� t
!

= Nh(t) (U(0; H(t))� t) :

Since U(0; H(t�(0))) = t�(0) by Lemma 1, we have

Ŵ 0(0; t�(0)) = 0.
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Moreover, since h(t) > 0 and U(0; H(�)) is decreasing on [c; �c], then Ŵ 0(0; t) > 0 for

t < t�(0), and W 0(t) < 0 for t > t�(0): Hence t = t�(0) uniquely maximizes Ŵ (0; t)

on [c; �c]: Clearly Ŵ (0; t) > Ŵ (r; t) for r > 0. Hence Ŵ (0; t�(0)) � Ŵ (0; t) � Ŵ (r; t)
for all (r; t), where the �rst inequality is strict if t 6= t�(0) and the second inequality
is strict if r > 0. �

The following lemmas are useful in the proof of Proposition 5. Recall that �r; the

solution to the equation r = (1�F (r))=f(r); uniquely maximizes �(�; n) on [0; !] for
all n 2 f1; :::; Ng �see Riley and Samuelson (1981) and Myerson (1981).

Lemma 2. If �r < r̂; then �(�r;H(t�(�r))) > �(r;H(t�(r))) for r 2 (�r; !].

Proof: Assume that �r < r̂; and let r 2 (�r; !]: Since t�(�r) > t�(r) Lemma 1, the c.d.f.
of the binomial B(N; p(H(t�(�r)))) �rst order stochastically dominates the c.d.f. of

the binomial B(N; p(H(t�(r)))): Thus, because � is strictly increasing with respect

to n; and �(�r; n) > �(r; n) for all n 2 f1; :::; Ng, we have

�(�r;H(t�(�r))) =
NX
n=1

pNn (H(t
�(�r)))�(�r; n)

>
NX
n=1

pNn (H(t
�(r)))�(�r; n)

�
NX
n=1

pNn (H(t
�(r)))�(r; n)

= �(r;H(t�(r))):�

Lemma 3. If �r < r̂; then d�(r;t�(r))
dr

���
r=�r

< 0.

Proof: Since H is di¤erentiable, then both t�(�) and �(�; H(t�(�))) are di¤erentiable
on (0; r̂). We have

d�(r;H(t�(r)))

dr

����
r=�r

=

NX
n=1

�
dpNn (H(t

�(r)))

dr

����
r=�r

�(�r; n) + pNn (H(t
�(�r)))

d�(r; n)

dr

����
r=�r

�
:

Since �r maximizes u(�; n) 2 [0; !] for all n 2 f1; :::Ng �see Riley and Samuelson
(1981) and Myerson (1981) �we have

d�(r; n)

dr

����
r=�r

= 0
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for all n 2 f1; :::Ng: Denote by p� = p(H(t�(�r))) = H(t�(�r)) the binomial probability
at t�(�r): Hence

d�(r;H(t�(r)))

dr

����
r=�r

=

NX
n=1

dpNn (H(t
�(r)))

dr

����
r=�r

�(�r; n)

=

NX
n=1

dpNn (p)

dp

����
p=p�

dp(H(t))

dt

����
t=t�(�r)

dt�(r)

dr

����
r=�r

�(�r; n)

= h(t�(�r))
dt�(�r)

dr

 
NX
n=1

dpNn (p)

dp

����
p=p�

�(�r; n)

!
.

In this expression, h(t�(�r)) > 0; and dt�(�r)
dr

< 0 by Proposition 1. The last term,

NX
n=1

dpNn (p)

dp

����
p=p�

�(�r; n);

measures the e¤ect of a marginal variation of the binomial probability around p�

on the seller revenue. This term positive: an increase in the binomial probability

induces a new binomial distribution whose c.d.f. �rst order stochastically dominates

the c.d.f. of B(N; p�) which, because � is increasing with respect to n; increases the

seller revenue. Therefore

d�(r;H(t�(r)))

dr

����
r=�r

< 0: �

Lemma 4. If values are distributed uniformly on [0; !]; then

d�(r;H(t�(r)))

dr

����
r=0

> 0:

Proof: Normalize ! = 1: We have

d�(r;H(t�(r)))

dr

����
r=0

=
@�(r;H(t�(r)))

@r

����
r=0

+
dt�(r)

dr

����
r=0

@�(r;H(t�(r)))

@t

����
r=0

=
NX
n=1

pNn (H(t
�(0)))

@�(0; n)

@r

����
r=0

+
dt�(r)

dr

����
r=0

NX
n=1

dpNn (H(t))

dt

����
t=t�(0)

�(0; n):
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Since bidders values are distributed uniformly on [0; 1]; direct calculation yields

�(0; n) =
n� 1
n+ 1

for n 2 f1; :::; Ng; and

@�(r; n)

@r

����
r=0

=

(
1 if n = 1

0 if n > 1:

Hence

d�(r;H(t�(r)))

dr

����
r=0

= pN1 (H(t
�(0))) +

dt�(r)

dr

����
r=0

NX
n=1

dpNn (H(t))

dt

����
t=t�(0)

�(0; n):

Now
dt�(r)

dr
=

@U(r;H(t))
@r

1� @U(r;H(t))
@t

;

where
@U(r;H(t))

@r
=

N�1X
n=0

pN�1n (H(t))
@u(r; n+ 1)

@r
;

and
@U(r;H(t))

@t
=

N�1X
n=0

dpN�1n (H(t))

dt
u(r; n+ 1):

Since values are uniformly distributed on [0; 1]; direct calculation yields

u(0; n) =
1

n (n+ 1)

for n 2 f1; :::; Ng; and

@u(r; n)

@r

����
r=0

=

(
�1 if n = 1

0 if n > 1:

Thus
@U(r;H(t))

@r

����
r=0

= pN�10 (H(t))
@u(r; 1)

@r
= � (1�H(t))N�1 :
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Substituting and simplifying notation by writing p = H(t�(0)) and dpN�1n

dt
= pN�1n (H(t))

dt
;

we get

�(r;H(t�(r)))

dr

����
r=0

= Np (1� p)N�1

� (1� p)N�1
 
1�

N�1X
n=0

dpN�1n

dt
u(0; n+ 1)

!�1 NX
n=1

dpNn
dt
�(0; n)

= (1� p)N�1
 
1�

N�1X
n=0

dpN�1n

dt
u(0; n+ 1)

!�1
�N ;

where

�N = Np�Np
N�1X
n=0

dpN�1n

dt
u(0; n+ 1)�

NX
n=1

dpNn
dt
�(0; n)

Note that dt
�(r)
dr

< 0 and @U(r;H(t))
@r

< 0 imply 1� @U(r;H(t))
@t

> 0: Hence

1� @U(r; t)

@t

����
r=0

= 1�
N�1X
n=0

dpN�1n (t)

dt
u(0; n+ 1) > 0:

Since t�(0) 2 (0; c) by Lemma 1, and since H is increasing, we have p = H(t�(0)) 2
(0; 1). We prove that

�(r;H(t�(r)))

dr

����
r=0

> 0

by showing that

�N = Np > 0:

We have
N�1X
n=0

dpN�1n

dt
u(0; n+ 1) =

NX
n=1

dpN�1n�1
dt

u(0; n);

and therefore

�N = Np�Np
NX
n=1

dpN�1n�1
dt

u(0; n)�
NX
n=1

dpNn
dt
�(0; n):

Since
dpNn
dt

= h(t)
dpNn
dp
;

and u(0; n) = 1
n(n+1)

and �(0; n) = n�1
n+1
; we have

�N = Np� h(t�(0)) (QN +RN) ;
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where

QN = Np
NX
n=1

dpN�1n�1
dp

1

n (n+ 1)
;

and

RN =
NX
n=1

dpNn
dp

n� 1
n+ 1

:

Now

QN = Np
NX
n=1

1

(n+ 1)n

(N � 1)!
(n� 1)!(N � n)!

�[(n� 1)pn�2(1� p)N�n � (N � n)pn�1(1� p)N�n�1]

= N !p
NX
n=1

(n� 1)pn�2(1� p)N�n � (N � n)pn�1(1� p)N�n�1
(n+ 1)!(N � n)! :

Similarly,

RN =
NX
n=1

n� 1
(n+ 1)

N !

n!(N � n)! [np
n�1(1� p)N�n � (N � n)pn(1� p)N�n�1]

= N !p
NX
n=1

(n� 1) [npn�2(1� p)N�n � (N � n)pn�1(1� p)N�n�1]
(n+ 1)!(N � n)! :

Hence

QN +RN = N !p
NX
n=1

(n+ 1)(n� 1)pn�2(1� p)N�n � n(N � n)pn�1(1� p)N�n�1
(n+ 1)!(N � n)! :

We have

NX
n=1

(n+ 1)(n� 1)pn�2(1� p)N�n
(n+ 1)!(N � n)! =

NX
n=2

(n+ 1)(n� 1)pn�2(1� p)N�n
(n+ 1)!(N � n)!

=
N�1X
n=1

npn�1(1� p)N�n�1
(n+ 1)!(N � n� 1)! ;

and

NX
n=1

n(N � n)pn�1(1� p)N�n�1
(n+ 1)!(N � n)! =

N�1X
n=1

n(N � n)pn�1(1� p)N�n�1
(n+ 1)!(N � n)!

=

N�1X
n=1

npn�1(1� p)N�n�1
(n+ 1)!(N � n� 1)! :
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Hence

QN +RN = 0;

and therefore

�N = Np: �

Proof of Proposition 5: We show that r� � �r. If �r � r̂; then r � �r implies

t�(r) = c; hence H(t�(r)) = 0; and therefore

�(r;H(t�(r))) = 0:

Since �(r;H(t�(r))) > 0 for 0 < r < r̂; we have r� < �r: If �r < r̂; then �(r;H(t�(r))) <

�(�r;H(t�(�r))) for all r > �r by Lemma 2, and therefore r� � �r: Hence Lemma 3 implies
r� < �r. Finally, if values are uniformly distributed, then r� > 0 by Lemma 4. �

Proof of Proposition 6: Consider a standard auction with an entry fee � 2 R and
a reserve price r 2 [0; !]. An entry strategy for a bidder is described by a threshold
t 2 [c; �c]. Given (�; r) if all bidders follow the same entry strategy t 2 [c; �c], then the
expected utility of an entering bidder is

~U(�; r;H(t)) = U(r;H(t))� �;

and seller revenue is

~�(�; r;H(t)) = �(r;H(t)) +NH(t)�:

A symmetric (Bayes perfect) entry equilibrium is a threshold t 2 [c; �c] such that for
all z 2 [c; �c]: ~U(�; r;H(t)) > z implies t > z and ~U(�; r;H(t)) < z implies t < z. For
� 2 R and r 2 [0; !] let ~t�(�; r) = c if ~U(�; r; 0) < c; and otherwise let ~t�(�; r) be the
solution to the equation

t = ~U(�; r;H(t)): (7)

The mapping ~t� can be shown to have properties analogous to those of the mapping

t�: It is easy to see that an analog of Proposition 2 holds; i.e., any standard auction

with an entry fee � and a reserve price r has a unique symmetric entry equilibrium

t = ~t�(�; r) 2 [c; �c]:
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Let r 2 (0; !]: We establish Proposition 6 by showing that there is � � 0 such

that
~�(�; 0; H(~t�(�; 0))) > �(r;H(t�(r))):

If r is so large that t�(r) = c; and therefore H(t�(r)) = �(r;H(t�(r))) = 0; then for

� = 0; our assumption that c < u(0; 1) implies

~�(�; 0; H(~t�(�; 0))) > 0 = �(r;H(t�(r))):

Hence assume that t�(r) > c and hence H(t�(r)) > 0: De�ne � by the equation

~t�(�; 0) = t�(r):

Note that � > 0: Thus

~U(�; 0; H(~t�(�; 0))) = ~t�(�; 0) = t�(r) = U(r;H(t�(r))):

Since the gross surplus is distributed between the seller and bidders, we have

~�(�; 0; H(~t�(�; 0))) +NH(~t�(�; 0)) ~U(�; 0; H(~t�(�; 0))) =
NX
n=1

pNn (H(~t
�(�; 0)))s(0; n);

and

�(r;H(t�(r))) +NH(t�(r)) ~U(r;H(t�(r))) =
NX
n=1

pNn (H(t
�(r)))s(r; n):

Hence s(0; n) > s(r; n) for each n and H(~t�(�; 0)) = H(t�(r)) > 0 imply

~�(�; 0; H(~t�(�; 0))) =

 
NX
n=1

pNn (H(~t
�(�; 0)))s(0; n)

!
�NH(~t�(�; 0)) ~U(�; 0; H(~t�(�; 0)))

=

 
NX
n=1

pNn (H(t
�(r))) (s(r; n)� s(r; n) + s(0; n))

!
�NH(t�(r))U(r;H(t�(r)))

= �(r;H(t�(r))) +
NX
n=1

pNn (H(t
�(r))) (s(0; n)� s(r; n))

> �(r;H(t�(r))). �
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Proof of Proposition 8. Assume c = c > 0. Using (3) we can calculate the social

surplus for each p and N; WN(p): As established in Section 2, a standard auction

with a zero reserve price generates the maximum �constrained� social surplus that

can be achieved by any mechanism, �see also Levin and Smith (1994), Proposition

6; i.e.,

W �
N � WN(p

�
N);

where p�N is the equilibrium probability of entry. Further, the sequence fW �
N(p

�
N)g �

[0; !] is decreasing by Proposition 9 in Levin and Smith (1994), and hence has a limit,

which we denote by W:

For each N , denote by ŴN(r; t) the social surplus generated in a standard auction

with a reserve r 2 [0; !] when bidders have heterogeneous entry costs and use the
entry threshold t 2 [c; �c] �this surplus can be calculated using (5). Also for each N
and r 2 [0; !] denote by t�N(r) the equilibrium entry threshold �the mapping t�N(�) is
well de�ned by Lemma 1. By Proposition 3, a standard auction with a zero reserve

price generates the maximum �constrained�social surplus that can be achieved by

any mechanism; i.e.,

Ŵ �
N � ŴN(0; t

�
N(0)):

We �rst show that

W �
N � ŴN(r; t

�
N(r))

for eachN and r 2 [0; !]; i.e., equilibrium social surplus is greater when entry costs are
homogeneous than when they are heterogeneous. When entry costs are heterogeneous

and the reserve price is r, then the expected cost of each entrant is

E[zjc � z � t�N(r)] > c;

whereas it is only c = c with homogeneous costs. Hence writing p̂N = H(t�N(r)) we
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have

W �
N � WN(p̂N)

=

NX
n=1

pNn (p̂N)s(0; n)�Np̂Nc

�
NX
n=1

pNn (p̂N)s(0; n)�Np̂NE(z j z � t�N(r))

�
NX
n=1

pNn (p̂N)s(r; n)�Np̂NE(z j z � t�N(r))

= ŴN(r; t
�
N(r)):

The above inequalities imply

W �
N � ŴN(0; t

�
N(0)) � ŴN(r

�
N ; t

�
N(r

�
N)) � �N(r�N ; t�N(r�N)) � �N(0; t�N(0)):

We show limN!1 ŴN(0; t
�
N(0)) = W: For each N let t̂N 2 [c; �c] be such that

H(t̂N) = p
�
N : Then

ŴN(0; t̂N) =
NX
n=1

pNn (p
�
N)s(0; n)�Np�NE(z j z � t̂N):

SinceW �
N � 0; then 0 � Np�N � !

c
for eachN; and hence limN!1 p

�
N = limN!1H(t̂N) =

0. Therefore limN!1 t̂N = c = limN!1E(z j z � t̂N): Since

0 � W �
N � ŴN(0; t̂N) = Np

�
N(c� E(z j z � t̂N));

and fNp�Ng is a bounded sequence, then limN!1(W
�
N�WN(0; t̂N)) = 0; and therefore

W = lim
N!1

W �
N � lim

N!1
(W �

N � ŴN(0; t̂N)) = lim
N!1

ŴN(0; t̂N):

By Proposition 3 and the inequality above we have

ŴN(0; t̂N) � ŴN(0; t
�
N(0)) � W �

N

for all N: Hence

lim
N!1

ŴN(0; t̂N) = lim
N!1

W �
N = W;

implies

lim
N!1

ŴN(0; t
�
N(0)) =W:
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Next we show that limN!1�N(0; t
�
N(0)) =W: For each N; write

UN(0; p) =
N�1X
n=0

pN�1n (p)u(0; n+ 1):

Since u(0; n) is decreasing in n; then UN(0; p) is decreasing in p: Hence the equilibrium

entry threshold when entry costs are heterogeneous, t�N(0) 2 [c; �c], and the equilibrium
entry probability when the bidders have homogeneous entry costs, p�N ; satisfy

UN(0; H(t
�
N(0))) = t

�
N(0) � c = UN(0; p�N):

Hence 0 � H(t�N(0)) � p�N for allN: Therefore limN!1 p
�
N = 0 implies limN!1H(t

�
N(0)) =

0; limN!1 t
�
N(0) = c; and limN!1E(z j z � t�N(0)) = c: Hence if the seller sets r = 0;

the asymptotic total bidder surplus is

limN!1NH(t
�
N(0))[t

�
N(0)� E(z j z � t�N(0))] = 0;

and thus the asymptotic seller revenue is

limN!1�N(0; t
�
N(0)) = limN!1 ŴN(0; t

�
N(0)) =W:

Since

ŴN(0; t
�
N(0)) � ŴN(r

�
N ; t

�
N(r

�
N)) � �N(r�N ; t�N(r�N)) � �N(0; t�N(0))

for all N; and limN!1 ŴN(0; t
�
N(0)) = limN!1�N(0; t

�
N(0)) =W; we have

limN!1 ŴN(r
�
N ; t

�
N(r

�
N)) = limN!1�N(r

�
N ; t

�
N(r

�
N)) = W: �

Proof of Proposition 9. Without loss of generality, assume that ! = 1: We �rst

establish that limN!1 Ŵ
�
N = 1 by showing that for every " > 0 there is �N su¢ ciently

large that Ŵ �
N > 1� " for all N � �N .

Let � be such that 1 � 1
�
(1 � e��) > 1 � ", i.e., 1

�
(1 � e��) < ". Such a � exists

since lim�!1
1
�
(1�e��) = 0. For each N > �; let tN 2 [0; �c] be such that H(tN) = �

N
.

Note tN exists since H is increasing. Also note that for " > 0; we have H(") > 0;

hence there is ~N su¢ ciently large that for all N > ~N; NH(") > �; hence tN < " for

N > ~N; and therefore limN!1 tN = 0.
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We have

ŴN(0; tN) =

NX
n=0

pNn (H(tN))
n

n+ 1
�NH(tN)

Z tN

0

zdH(z):

Since NH(tN) = � for all N and limN!1 tN = 0; we have

lim
N!1

NH(tN)

Z tN

0

zdH(z) = � lim
N!1

Z tN

0

zdH(z) = 0:

Since the limit of a binomial distribution as N goes to in�nity, holding NH(tN) = �

�xed, is the Poisson distribution, we have

lim
N!1

NX
n=0

pNn (H(tN))
n

n+ 1
=

1X
n=0

e���n

n!

n

n+ 1

=
1X
n=0

e���n

n!
(1� 1

n+ 1
)

= 1� 1

�

1X
n=0

e���n+1

n!

1

n+ 1
:

Letting k = n+ 1, i.e., n = k � 1 we have

1� 1

�

1X
n=0

e���n+1

n!

1

n+ 1
= 1� 1

�
(�e�� +

1X
k=0

e���k

k!
) = 1� 1

�
(�e�� + 1):

Let �N su¢ ciently large that for all N > �N����ŴN(0; tN)�
�
1� 1

�
(1� e��)

����� < �;
where 0 < � < "� 1

�
(1� e��): Then for each N > �N we have

Ŵ �
N � ŴN(0; tN) � 1�

1

�
(1� e��)� � > 1� ":

Now, since Ŵ �
N = ŴN(0; t

�
N(0)) for all N by Proposition 3, we have

Ŵ �
N =

NX
n=0

pNn (H(t
�
N(0)))

n

n+ 1
� lim
N!1

NH(t�N(0))

Z t�N (0)

0

zdH(z):

Since
nPN

n=0 p
N
n (H(t

�
N(0)))

n
n+1

o
� [0; 1] and NH(t�N(0))

R t�N (0)
0

zdH(z) > 0 for all N;

then limN!1 Ŵ
�
N = 1 implies

lim
N!1

NX
n=0

pNn (H(t
�
N(0)))

n

n+ 1
= 1;
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and therefore

lim
N!1

NH(t�N(0))

Z t�N (0)

0

zdH(z) = lim
N!1

NX
n=0

pNn (H(t
�
N(0)))

n

n+ 1
� lim

N!1
Ŵ �
N = 0:

It is easy to see that this implies

lim
N!1

t�N(0) = 0;

which in turn implies that the asymptotic total surplus captured by bidders is

lim
N!1

N

Z t�N (0)

0

(t�N(0)� z)dH(z) = 0:

And since in the limit bidders capture no surplus, all the surplus is captured by the

seller; i.e.,

lim
N!1

�̂�N = lim
N!1

Ŵ �
N = 1. �
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