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Gower Street, London WC1E 6BT, United Kingdom

Received August 11, 1997

ŽThis paper studies convergence and stability properties of T. Sjostrom’s 1994,¨ ¨
.Games Econom. Beha¨ . 6, 502]511 mechanism, under the assumption that bound-

edly rational players find their way to equilibrium using monotonic evolutionary
dynamics and best-reply dynamics. This mechanism implements most social choice
functions in economic environments using as a solution concept one round of
deletion of weakly dominated strategies and one round of deletion of strictly
dominated strategies. However, there are other sets of Nash equilibria, whose
payoffs may be very different from those desired by the social choice function.
With monotonic dynamics, all these sets of equilibria contain limit points of the
evolutionary dynamics. Furthermore, even if the dynamics converge to the ‘‘right’’
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Ž .set of equilibria i.e., the one which contains the solution of the mechanism , it may
converge to an equilibrium which is worse in welfare terms. In contrast with this
result, any interior solution of the best-reply dynamics converges to the equilibrium
whose outcome the planner desires. Journal of Economic Literature Classification
Numbers: C72, D70, D78. Q 2000 Academic Press
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1. INTRODUCTION

The theory of implementation studies the problem of designing decen-
Ž .tralized institutions ‘‘mechanisms’’ through which certain socially desir-

able objectives can be achieved. More precisely, a social choice rule is
Ž .implemented by a game-form mechanism if, for every possible environ-

Ž . Ž .ment preference profile , the solution set of equilibrium outcomes of the
mechanism coincides with the set of outcomes of the social choice rule.

This definition implicitly assumes that agents are always able to play
equilibrium strategies. However, there is substantial empirical and experi-
mental evidence against this theoretical presumption.3 In spite of this
evidence, research in implementation theory has paid little attention to the
problem of how equilibrium is achieved.4 Since the planner should be

Žconcerned with the performance of the mechanism when some if not all
.of the agents are not as ‘‘rational’’ as expected, it is useful to test the

mechanism’s performance in the presence of some form of bounded
rationality.

A more fundamental approach to these issues would require the planner
to take bounded rationality into account, when designing the game agents
play. This necessarily leads to an alternative definition of implementation
which includes, among the variables which specify the ‘‘environment,’’ the
learning protocols agents use, as well as initial conditions of the dynamic
process. In this respect, we propose the following definition. For a given
set of environments F and a given set of dynamics D, a social choice rule
is dynamically implemented by a mechanism if, for all f g F and d g D,
the limiting set of outcomes coincides with the set of outcomes of the
social choice rule.

There is a caveat here. Why should we focus only on limiting outcomes?
The planner may also care about what happens on the way to equilibrium,
as the dynamic path may include outcomes significantly different than

3 Ž .See Cooper et al. 1991 for the prisoner’s dilemma, a strictly dominance solvable game,
Ž .McKelvey and Palfrey 1991 for the centipede game, a game with a unique Nash equilibrium,

Ž .and Guth et al. 1982 for the ultimatum game, which has a unique subgame perfect¨
equilibrium.

4 Ž . Ž .Noticeable exceptions are the papers of Muench and Walker 1984 , Walker 1984 ,
Ž . Ž . Ž . Ž .Jordan 1986 , Vega-Redondo 1989 , De Trenqualye 1988, 1989 , and Cabrales 1999 .
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what the choice rule prescribes. This, in turn, would require one to fully
characterize the planner’s preferences, rather than specify the most pre-
ferred outcome, for any given state of the environment. This is something
the implementation literature traditionally leaves unspecified. Moreover, if
the planner does not discount the future and the game is played infinitely
often, then it is legitimate to look at limiting outcomes.

Ž .In this paper we study the dynamic implementation of Sjostrom’s 1994¨ ¨
mechanism.5 We concentrate on Sjostrom’s mechanism for several rea-¨ ¨
sons. First, the conditions for implementation are quite weak. Although
the environments that are permitted are not universal, they are rich
enough for most economic purposes. Furthermore, this reduction in the
domain allows the author to implement the social choice rule with a
‘‘bounded’’ game, that is, a game which does not exploit equilibrium
nonexistence to rule out undesirable outcomes.6 Finally, the game can be
solved by one round of deletion of weakly dominated strategies, and then
another round of deletion of strictly dominated strategies. This feature of
the mechanism makes it particularly attractive since, under some assump-
tions of imperfect knowledge of agents,7 the appropriate solution concept
implies one round of deletion of weakly dominated strategies, and then the
iterated deletion of strictly dominated strategies.

Ž .In Sjostrom’s 1994 mechanism agents are arranged to simultaneously¨ ¨
announce their own preferences, together with the preferences of their
two closest neighbors. The mechanism is designed in such a way that the
truthful report of one’s own preferences is weakly dominant, as it does not

Ž .affect one’s payoff, except for a set of so-called totally inconsistent states,
Ž .where it is strictly preferable to report preferences truthfully. Since, for

this mechanism, it is always advantageous to report the same preferences
about your neighbors as what they are reporting about themselves, it is
clear that the only equilibrium that survives the first round of deletion of
weakly dominated strategies is the truth-telling one.

However, there are many other Nash equilibria. In particular, for every
Žpreference profile R, there is a component i.e., a closed and connected

.set of equilibria in which all agents report the preferences for their
neighbors indicated in R, and report the preferences about themselves

Ž .indicated in R with high enough this need not be very high probability.

5 Ž . Ž .Sjostrom’s 1994 mechanism and the one proposed by Jackson et al. 1994 for separable¨ ¨
environments are very similar. Most of our results would generalize easily for that mechanism
as well.

6 Ž .For example, in the canonical mechanism for Nash implementation Repullo, 1987 , if
agents disagree widely on the announced preferences, they have to play a game in which the
agent announcing the highest integer wins a prize.

7 Ž .Either because of payoff uncertainty, as in Dekel and Fudenberg 1990 , or through lack
Ž .of common knowledge of rationality, as in Borgers 1994 .¨
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This is because it is important for the mechanism that all agents match
their neighbors’ announcements about themselves, but the report about

Ž .oneself is only important in some unlikely totally inconsistent state.
First, we study the performance of the mechanism under monotonic

Ž .dynamics Nachbar, 1990 , which essentially imply higher growth rates for
those strategies which perform better.8 For these dynamics, we show
Ž .Proposition 4 that many equilibria in all equilibrium components are
limit points of trajectories of the evolutionary dynamics that have com-

Žpletely mixed initial conditions that is, initial conditions that give strictly
.positive weights to all possible messages . Even when the dynamics con-

Žverge to the ‘‘right’’ component of equilibria i.e., the one which contains
.the solution of the mechanism , they need not go to the ‘‘right’’ equilib-
Ž .rium. We also show by example Proposition 2 that the initial conditions

that lead to these equilibria need not be close to the limiting point. We
Žalso study how the dynamic structure reacts to the introduction of arbi-

.trarily small perturbations in the vectorfield. In the example we show
Ž .Proposition 6 that, although there is a unique structurally stable compo-

Žnent namely, the component which contains the undominated equilibrium
.of the game , the untruthful component is stable for a non-negligible set of

admissible perturbations.
ŽIn other words, the less responsive the dynamics are to payoffs the

.further the initial conditions from the ‘‘right’’ equilibrium , the more
difficult it is to converge to the desired solution. Only in the extreme case

Žof best-reply dynamics in which the response to arbitrarily small payoff
. Ž .differences is infinite , we show Proposition 7 that any interior trajectory

converges to the pure strategy equilibrium in which players reveal their
true preferences and the outcome desired by the planner is achieved.

The fact that evolution need not eliminate weakly dominated strategies
Ž .has been known since, at least, Nachbar 1990 . However, we are far from

possessing a sound theory on the evolutionary properties of weakly domi-
nance solvable games, as we have examples in which a single round of
deletion is not allowed if we want to characterize the limiting set of the

Ževolutionary dynamics see, for example, Samuelson, 1993 and Cressman
.and Schlag, 1998 , as well as games in which only strategies which survive

Ž .an arbitrarily large number of rounds of deletion can be in the support of
Žthe limiting play see, for the finitely repeated prisoners’ dilemma, Cress-

.man, 1996; or for the centipede game, Ponti, 2000 . Since the theory has
not proposed, so far, a suitable framework to explain these differences, it is

8 One particularly well known member of the family of monotonic dynamics is the so-called
Ž .replicator dynamics of evolutionary game theory Taylor and Jonker, 1978 . These dynamics

Ž .have been given a learning theoretic foundation by Borgers and Sarin 1997 , and they can¨
Ž .also be interpreted as a model of imitation Schlag, 1994 .
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Ž .important to test the evolutionary properties of game-form mechanisms
in which the iterated deletion of dominated strategies plays such a crucial
role. In this respect, our findings are very similar to those of Gale et al.
Ž .1995 . They analyze the classic chain store game, another game which has
a Nash equilibrium component in which a player selects a weakly domi-
nated strategy with positive probability. In both cases, these components
are reachable by the evolutionary dynamics, and therefore should not be
discarded as a reasonable predictor of the asymptotic play.

The remainder of the paper is arranged as follows. In Section 2 we
introduce some notation, we describe the mechanism, and we make the

Žassumptions about the dynamics. In Section 3 we fully characterize for all
.interior initial conditions the set of limit points of any monotonic dynamic
Ž .for the game in Fig. 1 Sjostrom, 1994 to be considered as a simplified¨ ¨

version of the mechanism. In Section 4 we give local results on the
convergence and stability properties of the Nash equilibrium components
of the general game. In Section 5 we describe the structural stability
properties of the equilibria of the simplified mechanism. Section 6 explores

Ž .the dynamic implementation of Sjostrom’s 1994 mechanism under best-¨ ¨
reply dynamics. Finally, Section 7 concludes, together with an appendix
containing the proofs of the relevant propositions.

2. THE MODEL AND THE DYNAMICS

Ž .We introduce a few changes to Sjostrom’s 1994 model for analytical¨ ¨
convenience. First, we employ a Von Neumann]Morgenstern utility func-
tion instead of a preference relation. This is because we need to specify
the payoff functions for mixed strategies, as the dynamics are defined on
the mixed strategy space. We also assume that the set of possible prefer-
ence parameters is finite. This is because the dimension of the pure
strategy space is related with the set of preferences. If we had an infinite
dimensional pure strategy space, the dynamics, which account for the
relative frequency with which each pure strategy is being used, would have
to describe the evolution of a measure over an infinite space. This seems
an unnecessary complication for our purposes.

� 4 mThere is a set I ' 1, . . . , n , n G 3, of agents and a set A : R ofq
feasible consumption plans. The preferences of agent i g I are repre-

Ž .sented with a Von Neumann]Morgenstern utility function ¨ : A = F ªi i
R , where F specifies a finite set of possible preference parameters. Ani
element R of F represents the preferences of agent i over A. Ai i

Ž .preference profile is a vector R s R , . . . , R , which is assumed to be1 n
common knowledge among the agents. The following assumptions refine
the sets of feasible consumption plans and preference profiles.
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Ž . X XAssumption p.1 free disposal . If a g A and 0 F a F a, then a g A.

Assumption p.2. The set of feasible consumption plans A is convex.
X w x Ž . XFor all a, a g A and for all l g 0, 1 then la q 1 y l a g A.

Assumption p.3. The preferences represented by R g F are strictlyi i
X m Ž . X Ž .convex. For any a, a g R and for all l g 0, 1 , if a / a and ¨ a, R Gq i i

Ž X . Ž Ž . X . Ž X .¨ a , R , then ¨ la q 1 y l a , R ) ¨ a , R .i i i i i i

Ž .Assumption p.4. For any R g F if a G 0 and a / 0 then ¨ a, R )i i i i
Ž .¨ 0, R .i i

Ž . X XAssumption p.5 preference reversal . For any R , R g F if R / Ri i i i i
Ž . Ž . Ž X .then there are a, a g A such that ¨ a, R ) ¨ a, R and ¨ a, R )˜ ˜ ˜i i i i i i

Ž X .¨ a, R .i i
For any set B : R m and any R g F a choice representation is definedq i i

Ž . � Ž . Ž .4as follows: c B, R ' a g B ¬ for all b g B, ¨ a, R G ¨ b, R .i i i i i
For any i g I, a social choice function for player i is a mapping f :i

Ž . Ž Ž . Ž ..F ª A, where f R ' f R , . . . , f R .1 n

Ž . Ž . ŽAssumption p.6 individual rationality . For all i and R, f R / 0,i
.0, . . . , 0 .

Ž .A mechanism is a pair G ' M, a , where M ' = M and a : M ª A.ig I i
ŽM is the message space of agent i with generic element m , andi i

Ž .. Ž . Žm s m , m , . . . , m and a is the outcome function. A pair G, R a1 2 n
.mechanism and a preference profile defines a game.

ŽLet M ' M = ??? = M = M = ??? = M with generic elementyi 1 iy1 iq1 n
.m . Given a mechanism G and a preference profile R, we say that m isyi i

weakly dominated for some set of messages F ' = F : M if thereig I i
X Ž Ž X . . Ž Ž .exists a message m g F such that ¨ a m , m , R G ¨ a m , m ,i i i i i yi i i i i yi

. U Ž Ž XR for all m g F and there is some m g F such that ¨ a m ,i yi yi yi yi i i i
U . . Ž Ž U . . Ž Ž .. �m , R ) ¨ a m , m , R . Define the set U F : G, R ' m g F ¬yi i i i i yi i i i i

Ž .4m is not weakly dominated in F for the game G, R .i
The message m is a best response for player i to m g M in thei yi yi

Ž . Ž Ž . . Ž X . . Xgame G, R , if ¨ a m , m , R G ¨ a , m , m , R for all m g M .i i i yi i i i i yi i i i
Ž . Ž .A message profile m is a Nash equilibrium NE for the game G, R , if mi
Ž .is a best response to m in the game G, R for all i g I. A messageyi

Ž .profile m g M is an undominated Nash equilibrium UNE for the game
Ž . Ž Ž .. Ž .G, R if it is a Nash equilibrium and m g U M : G, R . Let UNE G, Ri i

� Ž . Ž .4' a m g A ¬ m is an UNE for the game G, R .
We say that a mechanism G implements a social choice function f in

Ž . Ž .undominated Nash equilibrium if for all R g F, f R s UNE G, R .
1Ž .For the iterated deletion of weakly dominated strategies let U G, R si

Ž Ž .. kŽ . kq1Ž .U M : G, R , and if U G, R has been defined for k G 1, let U G, Ri i i
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Ž kŽ . Ž .. `Ž . ` kŽ .' U = U G, R : G, R . Let U G, R ' F U G, R . Leti j g I j i ks1 i
Ž . � Ž . `Ž . 4IWD G, R ' a m g A ¬ m g U G, R for all i .i i

We say that a mechanism G implements a social choice function f with
Ž .iterated deletion of weakly dominated strategies if for all R g F, f R s

Ž .IWD G, R .
We now construct a mechanism.
Let M s F = F = F , so that each individual announces thei iy1 i iq1

preferences of her two neighbors, and let members of M and M bei
denoted m and m, respectively. A generic strategy is therefore m si i
Ž i i i . � 4R , R , R . A K-tuple of messages m , . . . , m is totally consistentiy1 i iq1 j j1 K

� 4if, whenever agents i, k g j , . . . , j both announce the preference of1 K
player j g I, then Ri s Rk. On the other hand, a K-tuple of messagesj j

� 4 � 4m , . . . , m is totally inconsistent if, whenever agents i, k g j , . . . , jj j 1 K1 K

both announce the preference of player j g I, then Ri / Rk.j j
Consider R , RX g F , where R / RX . By Assumption p.5 there arei i i i i

Ž . Ž . Ž X . Ž X .a, a g A such that ¨ a, R ) ¨ a, R and ¨ a, R ) ¨ a, R . We can˜ ˜ ˜i i i i i i i i
Ž . Ž X . Xchoose a and a so that ¨ a, R ) ¨ a , R for all a in the line segment˜ i i i i

Ž . Ž X . � mbetween a and a. Given this pair a, a let b R , R ' b g R ¬ b s la˜ ˜ i i i q
Ž . w x4 X Ž Žq 1 y l a, for l g 0, 1 . By construction, for all R , R g F , c b R ,˜ i i i i i

X . . Ž Ž X . X . Ž . Ž n 1 iy1 i iq1R , R / c b R , R , R . Let f i, m ' R , R , . . . , R , R , R ,i i i i i i 1 2 i iq1 iq2
ny1.. . . , R and, for every i and m , definen yi

¡f f i , m if m is totally consistentŽ .Ž .i yi

iy1 iq1b R , R if m is totally inconsistentŽ .i i i yi~B m sŽ .i yi 1
f f i , m otherwise.Ž .Ž .¢ in

Now we can define a :

c B m , Ri if Ri s Riy1 and Ri s Riq1Ž .Ž .i yi i iy1 iy1 iq1 iq1a m sŽ .i ½ 0 otherwise.

ˆ ULet R be the true preference profile and let R be an arbitrary preference
profile. To understand how the mechanism works, notice that the only
time when the choice of an announcement Ri has any effect on i’s payoffsi
is when m is totally inconsistent. In this case, the outcome is the optimalyi

Ž iy1 iq1. ichoice within the set b R , R according to the announced R . Thisi i i i
ˆis the reason why, for player i, announcing her true preference R cani

never hurt. Furthermore, for every alternative announcement Ri s RU ,i i
iy1 ˆ iq1 Uthere is some totally inconsistent m with R s R and R s R andyi i i i i

ˆ U ˆŽ . Ž Ž . .the set b ., . is constructed in such a way that c b R , R , R is strictlyi i i i i
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ˆ U U i UŽ Ž . . Žpreferred to c b R , R , R . Therefore, a message m s R , R ,i i i i i iy1 i
i i ˆ i. Ž .R is weakly dominated by a message m s R , R , R ; i.e., un-iq1 i iy1 i iq1

truthful announcements about oneself are weakly dominated.
Once these weakly dominated strategies are eliminated and all agents

i ˆannounce the true preferences about themselves, R s R , it is strictlyi i
dominated to announce untruthful preferences about your neighbors,

i ˆ iq1 i ˆ iy1R / R s R or R / R s R , since disagreeing with youriq1 iq1 iq1 iy1 iy1 iy1
neighbors is punished with the zero consumption bundle.

Ž .These two facts establish the main theorem in Sjostrom 1994 .¨ ¨
PROPOSITION 0. Let f be an arbitrary social choice function. The mecha-

nism described abo¨e implements f in UNE and in IWD.

It is important to notice, for the discussion we undertake below, that the
set of states in which not announcing the true preferences about oneself is
weakly dominated are themselves states that typically produce very bad

Žoutcomes for other opponents at least one of them will have zero
.consumption and probably many . If agents learn fast to avoid these

Ž .totally inconsistent states, there is no incentive to tell the truth about
oneself. The mechanism we have just described focuses on consensus
announcements, since disagreement is punished with zero consumption;
truth-telling is only rewarded in a set of states which need not be very
prominent in the minds of the players. This is precisely the reason why, if
agents are boundedly rational in the way we describe, convergence to the
social choice outcome function may fail to occur.

We now move on to the characterization of the evolutionary dynamics
we analyze.

Fix a given mechanism G and a given preference profile R g F. Let x m i
i

be the probability assigned by agent i to message m , and let x g D be ai i i
Ž < <mixed strategy for agent i where D denotes the M y 1-dimensionali i

.simplex which describes player i’s mixed strategy space . Let also x gyi
D ' = D be a mixed strategy profile for agents other than i, withyi j/ i j

Ž . Ž . Ž Žx ' x , x g D ' = D . Finally, let u x , x s Ý ¨ a m ,i yi ig I i i i yi mg M i i i
. . m jm , R P x .yi i jg I j

Ž .We formalize player i’s behavior in terms of the mixed strategy x t hei
Ž .or she adopts at each point in time. The vector x t will then describe the

state of the system at time t, defined over the state space D, with D0

denoting its relative interior, i.e., the set of completely mixed strategy
profiles.

Ž .Assumption d.1. The evolution of x t is given by a system of continu-
ous-time differential equations:

x m i s Dm i x t . 1Ž . Ž .Ž .i̇ i
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Ž .We require that the autonomous system 1 satisfies the standard
Ž . Ž .regularity condition; i.e., D must be i Lipschitz continuous with ii

m iŽ Ž ..Ý D x t s 0. Furthermore, D must also satisfy the followingm g M ii i

requirements:

Ž .Assumption d.2. D is a regular payoff monotonic selection dynamic.
Ž Ž .. m iŽ . m iŽ .More explicitly, let g m , x t ' x t rx t denote the growth rate˙i i yi i i

of strategy m . Then for all m , mX g M and all x g D it must be thati i i i yi yi

Xsign g m , x t y g m , x tŽ . Ž .Ž . Ž .i i yi i i yi

Xs sign u m , x t y u m , x t .Ž . Ž .Ž . Ž .i i yi i i yi

Assumption d.2 is commonly used in the literature to capture the essence
of a selectï e evolutionary process.9 Given the mixed strategy profile
played at each point in time, strategies with higher expected payoff grow
faster than poorly performing ones.

Ž . 0Assumption d.3. x 0 g D .

Assumption d.3 is also standard in the evolutionary literature. It ex-
cludes the possibility that the selection dynamic acts only on a subset of
the strategy space. This possibility arises because any solution of a mono-

Ž . 0tonic selection dynamics leaves any face of D, as well as D , invariant
Ž .and, a fortiori, forward invariant . In other words, a strategy that has zero
weight at time zero would also have zero weight at all subsequent times. If
Assumption d.3 did not hold, the selection dynamics would then operate
on a different game.

3. AN EXAMPLE

We prefix the dynamic analysis of the mechanism with the following
Ž .example, taken from Sjostrom 1994, p. 504 , which is intended to convey¨ ¨

the essence of our results. There is one unit of a single divisible private
good, which has to be divided among three players: 1, 2, and 3. Preferences
of players 1 and 2 are increasing in the amount of the good they consume,
and are common knowledge for all players and the planner. There are two
possible types for player 3’s preferences, which are indexed by 0 and 1.
Preferences of type 0 peak at consumption 1r3; preferences of type 1 peak
at consumption 1r2. Player 3’s type is common knowledge among the
players, but the planner does not know it.

9 Ž . Ž .See, for example, Samuelson and Zhang 1992 and Weibull 1995 .
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FIG. 1. Sjostrom’s example: game G.¨ ¨

For preferences of type 0, the social choice function recommends the
Ž . Ž . Ž .outcome f 0 s 1r4, 1r4, 1r2 ; for preferences of type 1, f 1 s

Ž .1r3, 1r3, 1r3 . Notice that the social choice function is such that type 3
Ž . Ž .would prefer the outcome f 1 when she is of type 0, and the outcome f 0

when she is of type 1. This provides her with an incentive to conceal her
type, and therefore the planner needs a nontrivial mechanism to elicit her
true preferences.

The mechanism proposed by Sjostrom requires the three players to¨ ¨
make a simultaneous statement about the preferences of player 3. Let

1Ž 0. Žm m , i g I represent the message in which preferences of type 1 typei i
.0 for player 3 are announced by player i. Figure 1 illustrates the outcome

function of the mechanism. As for its dynamic analysis, we shall focus on
the case in which true preferences of player 3 are of type 1, and assume
that Fig. 1 also represents the game’s payoffs when player 3’s preferences
are of type 1. We denote this game by G.

Player 1 picks a row, player 2 a column, and player 3 picks a matrix. We
first note that the mechanism leads to a game which is weakly dominance

Ž .sol̈ able, as it can be reduced to a single outcome the solution by the
iterated deletion of weakly dominated strategies. In particular, only one
round of deletion of weakly dominated strategies, and then an additional
round of deletion of strictly dominated strategies, is needed. In conse-
quence, unlike other weakly dominance solvable games, the same outcome
is selected independently on the order by which strategies are deleted.10

0 ŽWe start by deleting the weakly dominated strategy m for player 3 the3
.other agents have no dominated strategies at this stage . The reason is

that, like in the mechanism described in Section 2, truth-telling about your

10 Ž .Using Marx and Swinkels’ 1997 terminology, game G is in fact weakly dominance
Ž .solvable in a nice sense. So is Sjostrom’s 1994 general mechanism presented in the previous¨ ¨

section.
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own preferences never hurts, and is strictly optimal when the opponents
disagree on your own type. Once m0 has been removed, strategies m0 and3 1
m0 become strictly dominated. The reason is that, like in the mechanism2
described in Section 2, if all the players tell the truth about their own
preference, lying about a neighbor is punished with zero consumption. The

Ž 1 1 1 .unique strategy profile selected is then m , m , m , that is, the pure1 2 3
strategy profile in which the true preferences are consistently revealed.

Since each player has only two pure strategies in her support, we abuse
our notation setting x ' x m1

i .11 In the following proposition we fullyi i
characterize the set of Nash equilibria of game G.

PROPOSITION 1. The set NE of Nash equilibria of G is the union of
precisely two disjoint components NE0 and NE1, where

30NE ' x g D ¬ x s x s 0, x F ,� 41 2 3 7

11NE ' x g D ¬ x s x s 1, x G .� 41 2 3 2

Ž .Proof. See Cabrales and Ponti 1998, Proposition 1 .

Ž .We now move on to dynamics. Denote by RE G the set of restpoints of
Ž .G under any monotonic dynamic. It is straightforward to show that RE G

Ž .contains together with all the pure strategy profiles only the components

0 w xRE ' x g D ¬ x s x s 0, x g 0, 1� 41 2 3

and

1 w xRE ' x g D ¬ x s x s 1, x g 0, 1 .� 41 2 3

Our task is to study the asymptotics of a monotonic selection dynamic
whose initial state lies in the relative interior of the state space.

Ž Ž ..PROPOSITION 2. Any interior solution x t, x 0 of a montonic selection
Ž .dynamics x s D x con¨erges to NE.˙

Proof. See the Appendix.

If initial conditions are completely mixed, we then know from Proposi-
tion 2 that the evolutionary dynamics will eventually converge to a Nash
equilibrium of the game. In the next section we show that this result

Ž .generalizes locally also in the case of Sjostrom’s 1994 mechanism, as¨ ¨
described in Section 2.

11 The fact that each player has only two available options also allows us to express the
dynamics in terms of the payoff difference between player i’s truthful and untruthful strategy,

Ž Ž .. Ž Ž Ž .. Ž 1 Ž .. Ž 0 Ž ...which we call DP x t i.e., DP x t ' u m , x t y u m , x t .i y i i y i i i y i i i y i
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4. LOCAL RESULTS FOR THE GENERAL GAME

In Proposition 3 we characterize some components of Nash equilibria
for the game induced by the mechanism. In particular, we show that any

Ž .message profile in which the agents are unanimous in the arbitrary
U Žpreference profile they announce, R more precisely, the preferences

U .they announce about their neighbors and themselves are taken from R ,
is an equilibrium. Furthermore, any mixed strategy profile in which agents
mix between messages consistent with RU and other messages that only
differ in the announcements agents make about their own preferences is
also an equilibrium, provided that messages in RU are given a high enough
weight. The equilibria in each of these components are not payoff equiva-

Žlent, since disagreeing with a neighbor event with nonzero probability in
.these mixed equilibria results in a punishment. Nevertheless, Proposition

4 shows that this punishment is not high enough to prevent these equilib-
ria to be the limit points of some interior path of any monotonic selection
dynamic.

Before we proceed, some further terminology is needed. Let mU si
Ž U U U .R , R , R be a consensus announcement by agent i, let U siy1 i iq1 i

ˆŽ Ž . .max ¨ f R , R be the utility associated to the most preferred outcomeR i i i
ˆfrom the social choice function for agent i with true preferences R , andi

1 ˆŽ Ž . .let U s max ¨ f R , R be the utility associated to the most pre-in R i i in

ferred consumption bundle among those that result from dividing the
Ž U .bundles assigned by the social choice function by n. Let also S Ri

denote the set of all pure strategies in which announcements about the
neighbors agree with RU , i.e.,

S RU s m g M ¬ Ri s RU , Ri s RU , 2Ž . Ž .� 4i i i iy1 iy1 iq1 is1

U U UŽ . � Ž .4 Ž .with S R s m g M ¬ m f S R denoting the complement of S Ri i i i i i
U U U UŽ . Ž . Ž Ž . Ž ..with respect to M and S R ' = S R S R ' = S R .i yi j/ i j yi j/ i j

k iŽ U .Finally, denote by S R the followingi

Sk i RU s x ¬ x m i s 0, for all m f S RU and x mU
i ) k , 3� 4Ž . Ž . Ž .i i i i i i i

where we assume

ˆU y ¨ 0, RŽ .in i in
k G 4Ž . Ž .i U ˆ ˆ ˆ¨ f f i , R , R y ¨ 0, R q U y ¨ 0, RŽ .Ž .Ž . Ž . Ž .i i i i i in i i

k iŽ U .for all i and j / i. The set S R is the set of all mixed strategies ini
which i’s announcements about her neighbors agrees with RU , and the
probability of announcing RU is higher than k .i i
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ˆ U k i UŽ .PROPOSITION 3. For all R, R g R and x g S R , x is a Nashi i
ˆŽ .equilibrium of G, R .

Proof. See the Appendix.

Ž .To understand the role of 4 in the proof of Proposition 3, notice that,
k jŽ U .against any x g = S R , the payoff for agent i using strategyyi j/ i j

Ž U .m g S R satisfies the following condition:i i

ny1
U ˆu m , x G min k ¨ f f i , R , RŽ . Ž .Ž .Ž .i yi j i i iž /

j/i

ny1
ˆq 1 y min k ¨ 0, R . 5Ž .Ž .j i iž /ž /j/i

This is because, for all j / i, x mU
j G k , which in turn implies a lowerj j

Ž Ž .ny1.bound i.e., min k on the probability with which m is totallyj/ i j yi
U U ˆŽ . Ž Ž Ž .. .consistent with m g S R and, therefore, the payoff ¨ f f i, R , Ri i i i i

Ž .ny1is achieved. With the remaining probability 1 y min k , the worsej/ i j
that can happen to player i is that her message does not match the
announcements of his or her neighbors about themselves, in which case

ˆŽ .his or her payoff is ¨ 0, R . By the same token, against any x gi i yi
XU Uk jŽ . Ž .= S R , the payoff for agent i announcing a message m g S R isj/ i j i i

at most

ny1 ny1
X ˆu m , x F min k ¨ 0, R q 1 y min k U . 6Ž . Ž .Ž .i yi j i i j inž / ž /ž /j/i j/i

Ž . Ž .From Eqs. 5 and 6 , it follows that

u m , x y u mX , xŽ . Ž .i i yi i i yi

ny1
ˆG ¨ 0, R y U q min kŽ .i i in jž /

j/i

U ˆ ˆ= ¨ f f i , R , R q U y 2¨ 0, R , 7Ž . Ž .Ž .Ž . Ž .ž /i i i in i i

Ž . Ž X . Ž .which implies u m x y u m , x G 0, provided that 4 is satisfied.i i yi i i yi
k jŽ U . X Ž U .Also note that, for all x g = S R , if m , m g S R , thenyi j/ i j i i i

Ž . Ž X .u m , x y u m , x s 0. This is because, in playing any strategy ini i yi i i yi
Ž U .S R , agent i rules out the possibility that totally inconsistent statesi

Ž .occur at least the announcements about i have to coincide . These are the
only states in which i’s announcement about her own preferences makes a
difference to her own payoff.
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We shall now prove the elements in all the Nash equilibria components
characterized by Proposition 3 are reachable, i.e., are limit points for some
interior solution. By Lipschitz continuity, there exists a constant K ) 0
such that for all m , x , and xX , we have thati yi yi

X X< <g m , x t y g m , x t F K x y x ,Ž . Ž .Ž . Ž .i i yi i i yi yi yi

< <where the . denotes the norm of a vector. This in turn implies that, for all
Ž Ž .. Ž X Ž ..h ) 0 with u m , x t y u m , x t F yh , there exists some h )¨ i i yi i i yi ¨ g
Ž Ž .. Ž X Ž .. Ž .0, such that g m , x t y g m , x t F yh . By analogy with 7 , fori i yi i i yi g
UŽ .any m g S R , it also must bei i

u m , x y u mU , xŽ . Ž .i i yi i i yi

ˆ- U y ¨ 0, RŽ .i i i

mU
j U ˆ ˆy P x t ¨ f f i , R , R q U y 2¨ 0, R .Ž . Ž .Ž .Ž . Ž .ž /j/ i j i i i i j i

Ž Ž ŽTherefore, if h is a constant such that 0 F h - min ¨ f f i,¨ ¨ i, R i i
U ˆ ˆ.. . Ž . w .R , R y ¨ 0, R , then there exists another constant H g 0, 1 , withi i i

Ž .1r ny1¡ ¦ˆU y ¨ 0, R q hŽ .i i i ¨~ ¥H s max ,
U¢ §ˆ ˆž /i ¨ f f i , R , R q U y 2¨ 0, RŽ .Ž .Ž . Ž .i i i i i i

mU
j Ž . Ž U .such that, if x t ) H for all j and t, then strategies not in S R arej i

decreasing at a rate not higher than yh .g
We also need to establish a link between the weight with which mes-

UŽ .sages m g S R are played and the relative performance of strate-yi yi
Ž U .gies m g S R . This is done by means of the functioni i

2
2m mj jX t s x t q x t ,Ž . Ž . Ž .Ž .Ý Ý Ýi j jž /ž /j/i m gS m gSj j j j

Ž . w Ž .x Ž .with X t s max X t . The function X t accounts for the relativei i i
UŽ .weight of messages m g S R in x , since only against these mes-yi yi yi

Ž U .sages do strategies in S R yield different payoffs for player i. Therefore,i
Ž U .the maximum difference in payoffs between strategies in S R , andi
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Ž .therefore in growth rates by monotonicity, is connected to X t , as showni
in Lemma 2.12 Finally, let

yKX 0 H 2Ž .
L s min exp .U 2m½ 5ž /ihi x 0Ž .g Ž .i

mU
i Ž .The constant L appears because we want to show that x t need noti

go to one in the limit, even if there is convergence to the equilibrium
U Ž U .component to which m belongs. For any m g S R , the ratioi i

x mU
i t x m i 0Ž . Ž .i

Um mi ix t x 0Ž . Ž .i i

Žis the integral of the differences in growth rates thus connected to the
. Udifference in payoffs by monotonicity between m and m . This integrali i

Ž . Ž . Ž .depends on X t , as we show in Lemma 2. But X t depends on X 0 also,
UŽ .as well as on the growth rates of strategies of i’s opponents in S R . Asyi

shown in the following Proposition 4, also the weight of these latter
strategies has an upper bound which depends on h , K, and H. Thus, theg

constant L can be used to set an upper bound for the integral of the
difference in growth rates between strategies m and mU.i i

Ž . ŽAlso notice that X 0 can be made arbitrarily close to zero and,
.therefore, L arbitrarily close to 1 by selecting an initial condition in which

UŽ .the aggregate weight of strategies in S R is arbitrarily small.yi

mU
i Ž .PROPOSITION 4. Assume that, for all i g I, x 0 L ) H. Theni

UU m m mi i iŽ . Ž . Ž . Ž . w x Ž .a for all m g S R , x t rx 0 - exp yh t Hrx 0 for alli i i i g i
t and all i;

Ž . mU
i Ž .b x t ) H for all t;i

Ž . mU
i Ž . m iŽ . Ž mU

i Ž . m iŽ ..Ž . Ž U .c x t rx t - x 0 rx 0 1rL for all t and m g S R .i i i i i i

Proof. See the Appendix.

Ž .Proposition 4 b guarantees that pure strategy equilibria in all equilib-
Ž .rium components including the ‘‘wrong’’ ones are attractors of interior

Ž . Upaths. By Proposition 4 c , the limiting weight of m is less than 1i
Ž .provided L is sufficiently close to 1 , and therefore some mixed strategy
equilibria are attractors as well, if the initial conditions give sufficiently

UŽ .little weight to strategies in S R . This guarantees that, even if there isyi
convergence to the ‘‘right’’ component, it need not be to the pure strategy

12 In the Appendix.
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Žequilibrium remember that the equilibria are not payoff equivalent, as the
mixed strategy equilibria have lower expected payoff because agents are

.punished for announcing discordant preferences .
Convergence to mixed equilibria may occur because payoffs to all

U UŽ . Ž .strategies in S R are ‘‘close,’’ if the weight of strategies in S R isi yi
Ž .small. We know, by Proposition 4 a , that the weight of strategies in

U UŽ .S R is indeed decreasing. So, even though m has a payoff advantage,yi i
Ž .this advantage vanishes, and Assumption d.2 plus Lipschitz continuity

guarantees that it does not accumulate fast enough.

Ž .5. MORE ON THE EXAMPLE STABILITY WITHrOUT DRIFT

In the previous section, we extended the convergence result of Proposi-
tion 2 to the general mechanism, showing that the limit points of the
dynamics for interior initial conditions are generally different from the
outcomes intended by the planner. We now go back to our example to test
the stability properties of the various equilibrium components.

Ž Ž .. Ž .DEFINITION 1. Let x t, x 0 be the solution of 1 on state space D
Ž .given initial conditions x 0 . Let also C be a closed set of restpoints in D

of the same differential equation. Then:

Ž . Ž .i C is interior stable if, for every neighborhood O of C, there is
Ž .another neighborhood U of C, with U ; O, such that for any x 0 g U l

Ž 0. Ž Ž ..D U l D we have x t, x 0 g O;
Ž . Ž .ii C is interior attracting if it is contained in an open set O such

Ž . Ž 0. Ž Ž ..that for any x 0 g O l D O l D we have lim x t, x 0 g O;t ª`

Ž . Ž . Ž . Ž 0.iii C is globally interior attracting if for any x 0 g D D we
Ž Ž ..have lim x t, x 0 g O;t ª`

Ž . Ž . Ž .iv C is called interior asymptotically stable if it is interior attract-
Ž .ing and interior stable.

To simplify the analysis, we set additional conditions on the dynamics,
Žwhich is the purpose of the following assumption, which replaces Assump-

.tions d.1]3 :

Ž .Assumption d.4. The evolution of x t is given by the system of contin-
uous-time differential equations

˜x ' D x t , l s x t 1 y x t DP . q l b y x t , 8Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .i̇ i i i i i i

1 Ž .with l G 0, b s b s , and b s b g 0, 1 .1 2 32
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In words, the evolutionary dynamic is now composed of two additive
terms. The first represents the standard replicator dynamic, while the
second term ensures that, at each point in time, each strategy is played
with positive probability, no matter how it performs against the current

Žopponents’ mixed strategy profile i.e., it points the dynamic toward the
.relatï e interior of the state space D . Following Binmore and Samuelson

Ž .1999 , this latter term is called drift: it opens the model to the possibility
Ž .of a heterogeneity of behaviors. Gale et al. 1995 derive an analogous

system in the following way. At each point in time, a fixed proportion of
lŽ .players of measure is replaced by new individuals whose aggregate1 q l

behavior is represented by a generic, constant, completely mixed strategy
Ž .i.e., b , while the rest of the population aggregate behavior follows thei
replicator dynamics. The relative importance of the drift is measured by l,
which we refer to as the drift le¨el. We assume l to be ‘‘very small,’’
reflecting the fact that all the major forces which govern the dynamics
should be captured by the evolutionary dynamic defined by D, which here
takes the form of the replicator dynamics.

We check how the model reacts to the introduction of such a perturba-
tion. The stability analysis of the replicator dynamics with drift will give us
information about the effects of small changes in the vector field on the

Žequilibria of the system defined by the replicator dynamic in other words,
.it will test the structural stability of such equilibria . To simply the exposi-

tion, b and b have been chosen to be 1r2, since only the value of b1 2 3
turns out to be genuinely significant.

We start by looking at the case of the replicator dynamic without drift
Ž .i.e., when l s 0 . We know from Proposition 2 that NE is globally interior
attracting, since it attracts every interior path under any monotonic selec-

Ž .tion dynamic of which the replicator dynamic is a special case . We now
take a closer look at the stability properties of each component of Nash

Ž 0 1.equilibria separately i.e., NE and NE .
Figure 2 shows a phase diagram describing trajectories of the replicator

dynamic starting from some interior initial conditions. The Nash equilib-
0 Ž 1.rium component NE NE is represented by a bold segment in the

Ž .bottom-left top-right corner of the state space D. First notice that, as we
know from Proposition 2, all trajectories converge to a Nash equilibrium of

Ž .the game. Moreover, the diagram shows consistently with Proposition 4
that there are some trajectories of the replicator dynamic which converge
to NE0, the Nash equilibrium component in which both players 1 and 2
deliver the false message with probability 1. However, this latter compo-
nent is not asymptotically stable, as can be easily spotted from the

30diagram. Trajectories starting arbitrarily close to NE , provided x ) ,3 7

will eventually converge to the truth-telling component. We summarize the
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FIG. 2. The replicator dynamic and game G.

key properties of these trajectories in the following proposition:

Ž . 1PROPOSITION 5. Under the replicator dynamic i NE is interior asymptot-
Ž . 0ically stable, whereas ii NE is not.

Ž .Proof. See Cabrales and Ponti 1998, Proposition 5 .

We now move to the analysis of the replicator dynamic with drift.
Ž .Let b g 0, 1 be a generic element of the space of the feasible pertur-

bation. Figure 3 shows trajectories of the replicator dynamic with drift
Ž .under two different specifications of b. Figure 3 b represents a situation

in which, in the proximity of NE0, the drift against m0 is uniform acrossi
Ž . 0players, where in Fig. 3 a the drift against m is lower. As the diagrams3

show, there is a local attractor close to NE1 in both cases. Moreover, none
0 Ž .of the elements of NE is a restpoint of the dynamic with drift in Fig. 3 b .

Ž .In contrast, in Fig. 3 a there is an additional local attractor which belongs
to NE0: trajectories starting close to NE0 converge to it, as it happens in
the case of the replicator dynamics without drift.
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FIG. 3. The dynamic with drift and game G.
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Ž .We are interested in the convergence and stability properties of 8
when l ª 0, considering two different configurations of the drift parame-
ter b :

'23 y 4 30
CASE A: b g 0,ž /49

'23 y 4 30
CASE B: b g , 1 .ž /49

'23 y 4 30Given f 0.0222673, CASE A depicts a situation in which, for small49
values of x , the drift against the untruth-telling strategy is substantiallyi
lower for player 3 than for her opponents.

In the following proposition we characterize the set of restpoints of the
dynamic with drift, together with their stability properties:

ˆ Ž . Ž .PROPOSITION 6. Let RE b be the set of restpoints of 8 for l suffi-
ciently close to 0. The following properties hold:

ˆ 1Ž . Ž . Ž .a ;b g 0, 1 , RE b contains an element of NE , which is also
asymptotically stable.

ˆŽ . Ž .b Under CASE A RE b contains also two additional restpoints,
both belonging to NE0, one of which is asymptotically stable.

Proof. See the Appendix.

As we acknowledged in Section 1, there is a striking similarity between
Ž .the content of Proposition 6 and the findings of Gale et al. 1995 . They

also find that, for the entry game, the Nash component in which the
incumbent carries out her ‘‘incredible threat’’ is reachable under the
replicator dynamics. Moreover, like our NE0, it fails to be interior asymp-
totically stable, but for certain parameter values it may be asymptotically
stable when the system is slightly perturbed. Given the failure of asymp-
totic stability without perturbations, one would expect any perturbation to
move the system away from the unstable component and the weakly
dominated strategy to become extinct. Proposition 6 tells us that evolution-
ary game theory does not provide a ground for such a claim. Once again,

Ž .the intuition here is similar to the one in Gale et al. 1995 . When there is
drift, strategies against which the weakly dominated strategy does poorly
will have positive weight at all times and, therefore, the part of the
dynamics that depends on payoffs pushes against the dominated strategy.
On the other hand, drift may provide a direct push in favor of the

Ždominated strategy and more crucially, in favor of those strategies of the
.other players which do well against the dominated strategy . When the
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balance between these two forces is right, one gets a stable equilibrium
with non-negligible weight for the dominated strategy.

¨ ¨6. BEST-REPLY DYNAMICS AND SJOSTROM’S MECHANISM

Ž .In this section, we consider an alternative scenario. Suppose that x t
evolves according to the dynamics

x s BR x y x , 9Ž . Ž .˙

Ž .with BR x denoting the mixed strategy best-reply correspondence BR:
13 Ž .D ¬ D. This alternative dynamic defines a continuous-time version of

the classic best-reply dynamics, often proposed as an alternative to the
evolutionary dynamics studied hereto. We can give two interpretations to
Ž . Ž . Ž .9 . Following Matsui 1992 , we can use 9 to approximate the evolution
of an infinite population of players who occasionally update their strategy,

Ž . Ž .selecting a best reply to the current population state x t . Alternatively, 9
Žcan be regarded as the continuous-time limit up to a reparametrization of

. 14time of the well known fictitious play dynamic. This dynamic accounts
for the evolution of players’ beliefs, when these beliefs follow the empirical

Žfrequencies with which each pure strategy profile has been played and
.perfectly observed in the past, and agents select, at each point in time, a

pure strategy among those which maximize their expected payoff, given
their current beliefs.

ˆ i ˆ ˆ i ˆ i ˆ� 4 � 4Let S s m g M ¬ R s R , s s m g S ¬ R s R , R s R ,ˆi i i i i i i i iy1 iy1 iq1 iq1
� 4with s s s , i g I denoting the pure Nash equilibrium in which all agentsˆ î

Žconsistently reveal their true preferences i.e., the ‘‘solution’’ of G given
.̂the true preference profile R .

Ž .PROPOSITION 7. Any interior solution of 9 con¨erges to s.̂

Proof. See the Appendix.

13 Ž .Notice that, for some x g D, BR x can take infinitely many values. Thus, uniqueness of
Ž . Ž .the solution of 9 is not guaranteed. However, since BR x is upper-hemicontinuous with

Ž .closed and convex values, it can be shown that the differential inclusion x g BR x y x has˙
Ž . Ž Ž ..at least one interior solution x t, x 0 , which is Lipschitz continuous and defined, for any

Ž . Ž .t G 0 Aubin and Cellina, 1984, Chap. 2 . On the stability properties of 9 see Hofbauer
Ž .1997 .

14 Ž .First introduced by Brown 1951 as an algorithm to compute Nash equilibria, fictitious
Ž .play has been recently re-interpreted as a learning model by Fudenberg and Kreps 1993 . We

prefer here the non-standard version in continuous-time to be consistent with the rest of the
paper. Nevertheless, in an earlier version of this paper we prove that the same results still
hold if the dynamics are defined in discrete-time.



CABRALES AND PONTI268

For best-reply dynamics we have shown that every interior solution
converges to the unique equilibrium whose outcome is the one the planner
wants to implement. This is so because since initial beliefs are completely
mixed, they will always be completely mixed, so these weakly dominated
strategies will always remain suboptimal, will never be played, and their
weight in beliefs will eventually vanish. This implies that nonequilibrium
strategies by which agents misrepresent their neighbors’ preferences be-
come also suboptimal, and agents will learn not to use them.15

The results obtained here are so different from those we derived in the
previous sections essentially because the difference in growth rates be-

Ž .tween two pure strategies, in the case of the best-reply dynamics 9 , need
not satisfy Lipschitz continuity. The only strategies with a positive growth
rate are best responses; this implies that there is an infinite response of
growth rates to changes in the sign of the differences in payoffs, which is
precisely what Lipschitz continuity rules out.

7. CONCLUSIONS

We have argued that there is room for doubt about the practicability of
one of the leading examples of implementation with iterated deletion of
weakly dominated strategies when agents are boundedly rational. As we
said in Section 1, there are only few papers that study implementation with
boundedly rational players, so a deeper theoretical study with evolutionary
tools of other mechanisms studied in the literature would enhance our
understanding of the performance of these mechanisms with this type of
agent, a necessary step before mechanisms are used in real life.

Further empirical study is at least as necessary. It would, for example,
help to answer the question about which of the dynamics assumptions is
more appropriate. In this sense, there is already some evidence on mecha-

Ž .nism design and learning algorithms. Chen and Tang 1998 have done
experiments with the basic quadratic mechanism by Groves and Ledyard
Ž . Ž .1977 and the paired-difference mechanism by Walker 1981 . They esti-
mate different learning models using experimental data, showing that

Žvariants of stimulus]response learning algorithms whose expected law of
.motion is the replicator dynamics outperform the generalized fictitious

play model. This is also consistent with the good performance that Roth
Ž .and Erev 1995 show for stimulus]response learning algorithms in mim-

15 Ž .By analogy, it can be proved that every interior trajectory of 9 , for game G, converges to
Ž . Ž .1, 1, 1 see Cabrales and Ponti, 1998, Proposition 7 .
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icking the behavior of a range of experimental data, which includes other
weakly dominance solvable games, like the ultimatum game.16

But even more importantly, the empirical and experimental work would
help to design games with good convergence properties to the preferred
social outcome by revealing how people adjust their play in games like that
studied in this paper, as well as in other mechanisms proposed by the
literature. We have already begun to do such experimental studies.17

APPENDIX

Proof of Proposition 2. To prove the proposition, it is enough to show
that any interior trajectory converges. The reason is that, once conver-
gence has been proved, we can apply the standard result ‘‘convergence

Žimplies Nash under any monotonic selection dynamics’’ see, e.g., Weibull,
Ž ..1995, Theorem 5.2 iii .

We start by observing that the dynamic is forward invariant. This implies
Ž .that x t is always defined and positive, for any nonnegative t. Byi

Ž .monotonicity, x t is also a positive, increasing function of t and bounded3
Ž 1 . Ž .above by 1 since m is a weakly dominant strategy . Therefore, x t must3 3

Ž .converge this already implies convergence of player 3’s mixed strategy .
U Ž .Let x ' lim x t , when such a limit exists. Three alternative casesi t ª` i

have to be discussed.
U U X 3Ž . Ž .a x s 0. If x s 0 there must be a time t such that x t - for3 3 3 7

X X Ž Ž ..t ) t . This implies that there is a k ) 0 such that for all t ) t, DP x ti
Ž .- yk for i s 1, 2. This implies, by monotonicity, lim x t s 0 fort ª` i

U Ž .i s 1, 2; thus x s 0, 0, 0 .
Ž . U U Žb x s 1. By a similar argument, monotonicity implies x s 1,3

.1, 1 .
Ž . U Ž . Uc x g 0, 1 . We want to prove that x cannot converge to a value3 3

within this range unless the system converges to a Nash equilibrium. To do
Ž .so given the special features of our example it is enough to show that, if

U Ž .x g 0, 1 , then both players 1 and 2 select, in the limit, the same pure3
strategy. Given that this implies convergence of the full mixed strategy

16 Ž .In their paper, Roth and Erev 1995 show that these dynamics explain the data
significantly better, according to quadratic deviation measures and others, than a generalized
fictitious play model which can accommodate behaviors ranging from fictitious play to best
response dynamics by the estimation of a ‘‘forgetfulness parameter’’ which weights past

Ž .information. For the experimental evidence on learning rules, see also Tang 1996 , Chen
Ž . Ž .et al. 1997 , and Mookherjee and Sopher 1997 .

17 Ž . Ž .See Cabrales et al. 1998 and Gantner et al. 1998 .
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profile, the result follows. More formally, what we need to prove is
contained in the following lemma:

U Ž .LEMMA 1. If x g 0, 1 then either3

xU s 0, i s 1, 2 CASE 0 hereafterŽ .i

or

xU s 1 i s 1, 2 CASE 1 .Ž .i

Proof. Assume, for the purpose of contradiction, that neither of the
� 4̀above statements is true. In this case, there must exist a sequence tk ks1

Ž .and a positive constant « ) 0 such that either x t ) « , i s 1, 2, ori k
Ž . Žx t - 1 y « , i s 1, 2 for all k in other words, assume that the systemi k

stays infinitely often an « away from the faces of D in which player 1 and 2
.play the same pure strategy . We already noticed that these are the only

faces of D in which both pure strategies for player 3 yield the same payoff.
If the system stays away from these faces infinitely often along the solution

Ž Ž ..path, then the integral of the payoff difference DP x t goes to infinity3
as t goes to infinity.

Ž Ž .. Ž .To show this, notice that DP x t is a continuous function of x ti
Ž .defined over a compact set D . In the case of player 3, such a function

takes the following form:

2
x t y x t q x t 1 y x t q x t 1 y x tŽ . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .1 2 1 1 2 2

DP x t ' .Ž .Ž .3 6
10Ž .

w < Ž Ž .. <xTake g ' max g m , x t , i.e., the highest possible growthM ig I, x g D i i yiyi y i

Ž . Žrate in absolute value over all strategies and players we know a max
Ž . .exists, since also g . is continuous in D . Then define t , t , t , and t asi 1 2 3 4

follows:

w x« ln 2
w xt solves « exp yg t s i.e., t s ,1 M 1 1ž /2 gM

2
ln y2 q

« «w xt solves 1 y « exp yg t s i.e., t s ,Ž .2 M 2 22 gM� 0
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1 1
ln y q

« 2 «w xt solves « exp g t s 1 y i.e., t s ,3 M 3 32 gM� 0
2 y «

ln
« 2 y 2«w xt solves 1 y « exp g t s 1 y i.e., t s .Ž .4 M 4 42 gM� 0

w xLet ­t ' min t , t , t , t be the lower bound for the time interval in1 2 3 4
« « Ž Ž ..which, after each t , - x - 1 y , i s 1, 2 and therefore DP x t stillk i 32 2

« 1 y «r2Ž .Ž Ž Ž .. wremains bounded away from 0 i.e., DP x t ) ) 0, ; t g t , t3 k k3
« 1 y «r2Ž .x. � Ž . 4 Ž Ž ..q ­t . Denote by G s x g D ¬ DP x G . Now define g x t« 3 i3

as the time derivative of the log of the ratio between the probabilities with
which each of player i’s pure strategies are played, which can be expressed
in terms of the difference in the growth rates:

­ x t x t 1 y x tŽ . Ž . Ž .Ž .˙ ˙i i i
g x t ' ln s yŽ .Ž .i ž /­ t 1 y x t x t 1 y x tŽ . Ž . Ž .i i i

x tŽ .i̇s .2
x t y x tŽ . Ž .Ž .i i

Ž Ž ..Also g x t is a positive number bounded away from zero infinitely3
Ž .often since, by Assumption d.1, it is a continuous function of x t defined

Ž Ž ..on a compact set, which preserves the same sign of DP x t . This implies3
Ž Ž ..that we can always define a constant g s min g x t , with g ) 0« x g G 3 ««

Ž Ž .. Ž Ž ..by Assumption d.2. Also by Assumption d.2, g x t ) g m DP x t3 « 3
« 1 y «r2Ž . Ž Ž ..) . If we integrate the value of g x t over time we then obtain33

` `
t t q­t t q­tk klim g x t dt G g x t dt ) g dt s `,Ž . Ž .Ž . Ž .Ý ÝH H H2 3 «

tª` 0 t tk kks1 ks1

Uwhich implies that x s 1, which leads to a contradiction.3

U Ž . Ž . Ž .To summarize, Lemma 1 shows that, if x g 0, 1 , x t , and x t must3 1 2
Ž Ž . .converge and therefore x t must converge to a Nash equilibrium . Since

this exhausts all cases the result follows.

Proof of Proposition 3. We being by noting that, against any m g M ,yi yi
Ž U .all strategies m g S R yield the same payoff, as they only differ in i’si i

w x Ž U .announcement about herself. Since supp x : S R , totally inconsis-yi yi
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Žtent states the only states where announcements about i’s own type
.influence her own payoff are excluded.

m i Ž U .For all x such that x ) 0 only if m g S R we haveˆ ˆi i i i

mU
j U ˆ mU

j ˆu x , x G P x ¨ f f i , R , R q 1 y P x ¨ 0, R .Ž .Ž .Ž .ˆ Ž .Ž . Ž .i i yi j/ i j i i i j/ i j i i

For all x / x ,ˆi i

m mi iu x , x F x u x , x q 1 y xŽ . Ž .ˆÝ Ýi i yi i i i yi iž /
m gS m gSi i i i

U Um mj jˆ= P x ¨ 0, R q 1 y P x U .Ž .Ž .j/ i j i i j/ i j in

Then

u x , x y u x , xŽ .Ž .ˆi i yi i i yi

U Um mi j ˆ ˆG 1 y x P x ¨ f f i , R , R y ¨ 0, RŽ .Ž .Ž . Ž .Ý ž /i j/ i j i i i i iž /
UŽ .m gS Ri i

Um j ˆq 1 y P x ¨ 0, R y U ,Ž . Ž .ž /j/ i j i i in

Ž .which is great than zero since, by 4 ,

P x mU
j G P kj/ i j j/ i j

ˆU y ¨ 0, RŽ .in i iG .
U ˆ ˆ ˆ¨ f f i , R , R y ¨ 0, R q U y ¨ 0, RŽ .Ž .Ž . Ž . Ž .i i i i i in i i

The following lemma will be useful in the proof of Proposition 4.
X Ž U .LEMMA 2. Let any m , m g S R and x . Theni i i i

g m , x y g mX , x G y2 KX .Ž . Ž .i i yi i i yi i

m j m j Ž U . U m jProof. Let x such that x s x for all m g S R _ m , x s 0ˆ ˆ ˆyi j j j j j jU UU m m mj j jŽ . Ufor all m g S R , and x s x q Ý x .ˆj j j j m g S ŽR . jj j

Ž . Ž X . Ž U . Ž .Since u m , x s u m , x for all x g S R , then g m , x̂i i yi i i yi yi yi i i yi
Ž X .s g m , x .ˆi i yi
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By Lipschitz continuity we have that

< <g m , x y g m , x G yK x y x 11Ž . Ž .Ž .ˆ ˆi i yi i i yi yi yi

X X < <g m , x y g m , x G yK x y x . 12Ž . Ž .Ž .ˆ ˆi i yi i i yi yi yi

Ž . Ž X . < <Since g m , x s g m , x and x y x s X , the result follows byˆ ˆ ˆi i y1 i i yi yi yi i
Ž . Ž .adding up inequalities 11 and 12 .

Proof of Proposition 4. By contradiction.

Ž .Suppose that a is the statement that stops being true earliest, that it
UŽ .does so for agent i and strategy m g S R and that the boundary time isi i

tX. Then it must be

x m i tX HŽ .i Xs exp yh t .Ugm mi ix 0 x 0Ž . Ž .i i

Notice that, for all t,

u m , x t y u mU , x tŽ . Ž .Ž . Ž .i i yi i i yi

ˆ mU
j mU

jF ¨ 0, R P x t q U 1 y P x tŽ . Ž .Ž .Ž .i i j/ i j i j/ i j

U ˆ mU
jy ¨ f f i , R , R P x tŽ . Ž .Ž .Ž .ž i i i j/ i j

ˆ mU
jq¨ 0, R 1 y P x tŽ .Ž .Ž . /i i j/ i j

ˆs U y ¨ 0, RŽ .i i i

mU
j U ˆ ˆy P x t ¨ f f i , R , R q U y 2¨ 0, R .Ž . Ž .Ž .Ž . Ž .ž /j/ i j i i i i i i

Ž . XSince b is true for t - t ,

u m , x t y u mU , x tŽ . Ž .Ž . Ž .i i yi i i yi

ˆ ny1 U ˆ ˆ- U y ¨ 0, R y H ¨ f f i , R , R q U y 2¨ 0, R .Ž .Ž .Ž . Ž . Ž .ž /i i i i i i i i i

Thus,

u m , x t y u mU , x t - yh ,Ž . Ž .Ž . Ž .i i yi i i yi ¨

which, by Assumption d.2 and the definition of h and h , implies that¨ g

g m , x t y g mU , x t - yh .Ž . Ž .Ž . Ž .i i yi i i yi g
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mU
i Ž X. Ž Ž .. Ž U Ž ..Given x t F H, if we integrate g m , x t y g m , x t from 0i i i yi i i yi

to tX, we obtain the following:

x m i tX HŽ .i X- exp yh t .Ugm mi ix 0 x 0Ž . Ž .i i

This is a contradiction.
Ž .Suppose that b is the statement that stops being true earliest, that it

does so for agent i, and that the boundary time is tX. Then, it must be true
mU

i Ž X.that x t s H.i
Ž U . � U4Notice that Lemma 2 implies that, for all m g S R _ m ,i i i

g mU , x t y g m , x t ) y2 KX t . 13Ž . Ž . Ž . Ž .Ž . Ž .i i yi i i yi i

Ž . X Ž .Since a holds for t - t , 13 implies that

H 2
Ug m , x t y g m , x t ) y2 K exp y2h t X 0Ž . Ž . Ž .Ž . Ž . Ui i yi i i yi g i2mž /ix 0Ž .Ž .i

H 2

G y2 K exp y2h t X 0 .Ž .Ug 2mž /ix 0Ž .Ž .i

By integration,

U Xm m 2i ix t x 0 y2 KX 0 HŽ . Ž . Ž .i i
) exp G L.U UXm m 2i i m ix t x 0 2hŽ . Ž . x 0Ž .i i g Ž .i

Ž U .Adding over all strategies in S R ,i

U U UX X Xm S ŽR . S ŽR .i i ix t x t 1 y x tŽ . Ž . Ž .i i i
) L s L G L.U U Um S ŽR . S Ž r .i i ix 0 x 0Ž . Ž . 1 y x 0Ž .i i i

mU
i Ž X. Ž mU

i Ž . .This implies x t ) H using the assumption x 0 L ) H , which is ai i
contradiction.

Ž .Suppose that c is the statement that stops being true earliest, that it
does so for agent i, and that the boundary time is tX. Then it must be

mU
i Ž X. m iŽ X. Ž mU

i Ž . m iŽ ..Ž .x t rx t s x 0 rx 0 1rL .i i i i
Ž U . � U4By Lemma 2, for all m g S R _ m ,i i i

g m , x t y g mU , x t ) y2 KX t . 14Ž . Ž . Ž . Ž .Ž . Ž .i i yi i i yi i
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Ž . X Ž .Since a holds for t - t , 14 implies that

H 2 X 0Ž .iUg m , x t y g m , x t ) y2 K exp y2h tŽ . Ž .Ž . Ž . Ui i yi i i yi g 2mž /ix 0Ž .Ž .i

H 2

G y2 K exp y2h t X 0 .Ž .Ug 2mž /ix 0Ž .Ž .i

By integration,

UXm m 2i ix t x 0 y2 KX HŽ . Ž .i i 0
) exp G L,U UXm m 2i i m ix t x 0 2hŽ . Ž . x 0Ž .i i g Ž .i

which implies that

x mU
i tX x mU

i 0 1Ž . Ž .i i
- ,Xm mi ix t x 0 LŽ . Ž .i i

which is a contradiction. Since this exhausts all cases the result follows.

Proof of Proposition 6. The proof is constructed as follows. We first
Ž .characterize the limit of the set of restpoints RE b , and then analyze the

stability properties of each of its elements.
Ž .We start by observing that, given b g 0, 1 , any restpoint must be

Ž .completely mixed, and it also must be x ) b , as DP . is always positive3 3
Ž 0in the interior of the state space D because m is a weakly dominated3

.strategy . We also know, by continuity of the vectorfield with respect to l,
that every limiting restpoint of the dynamic, as l goes to zero, must lie in

Ž .the set of restpoints of the unperturbed dynamic RE G .
First, we analyze the limit set of restpoints under CASE 0. In this case,

both players 1 and 2 play their strategy m0 with probability 1, that isi
x s 0, for i s 1, 2. Setting x s 0 yields the equation˙i 1

1x 12 y xŽ .1 12s 15Ž .
l 1 y x 3 q x y x 7 y xŽ . Ž .Ž .1 1 3 2

and an analogous expression can be obtained for x rl. Denote by x 0 a2 3
limiting value in a restpoint, if a limit exists, for x . When the limiting3
values for x and x are zero we have1 2

x 6i
lim s . 16Ž .0l 3 y 7xx ª0 Ž .i 3
lª0
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30Notice that, in this case, if a restpoint exists, it must be x - , since3 7
Ž .x rl ) 0. We set x rl s 0, substitute x rl with the expression in 16 ,˙i 3 i

solve for x , and substitute x , i s 1, 2 and l by their limiting value of3 i
zero. The solutions for x 0 take the following form:3

'1 q 7b 1 y b 46 y 49bŽ .
0x s and3̂ 10

'1 q 7b y 1 y b 46 y 49bŽ .
0x s .3̌ 10

30 0Remember that x must be a real, positive number, with b - x - . For3 3 7

the expression under the square root at the numerator to be nonnegative,
'23 y 4 30w xit must be that b g 0, f 0.0222673 , which determines the feasi-49

0 Ž 0.ble range for both roots. Within this interval of values for b , x x is aˆ ˇ3 3
Ž .strictly decreasing increasing function of b , which has a minimum and a

' '15 y 2 30 2 15 y 2 30Ž . Ž .maximum, whose values are 0 and , respectively. As35 10 35
' '23 y 4 30 15 y 2 30b ª , both solutions converge to .49 35

We now deal with the subset of limiting restpoints under CASE 1, i.e.,
with limiting values for x s 1 for i s 1, 2. The equations corresponding toi
Ž . Ž .15 and 16 are now

11 y x 12 x yŽ . Ž .1 1 2s 17Ž .
l x 7x q x 1 y x y 3Ž .Ž .1 3 2 3

1 y x 3Ž .i
lim s , 18Ž .1l 2 2 x y 1x ª1 Ž .i 3
lª0

1 Ž .where x denotes a limiting value for x if a limit exists . By analogy with3 3
11Ž .CASE 0, we know from 18 that, if a restpoint exists, it must be x ) .3 2

1 Ž .There is a unique feasible solution for x , ;b g 0, 1 which has the3
following form:

'3 q 4b q 9 y 16b 1 y bŽ .
1x s .3̂ 10

Following the same procedure for the remaining restpoints of the unper-
Ž Ž .turbed dynamics i.e., the pure strategy profiles which belong to RE G

.and do not satisfy either CASE 0 or CASE 1 does not add any element to
the limiting set of restpoints of the perturbed dynamics. This should not be
surprising, as any other restpoint of the unperturbed replicator dynamics is
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unstable with respect to the interior. Since this exhausts all cases, the
result follows.

We now move to establish the stability properties of each limiting
Ž .restpoint separately. The Jacobian matrix J x, l for the dynamic system is

as follows:

y 1 y x x1 1 y x 1 y x1 x1 7 q xŽ . Ž . Ž . Ž .1 3 2
1 y 2 x DP y lŽ .1 1 12 12

y 1 y x x 1 y x 1 y x x 7 q xŽ . Ž . Ž . Ž .2 2 3 2 2 1 .1 y 2 x DP y lŽ .2 212 12
1 y 2 x 1 y x x 1 y 2 x 1 y x xŽ . Ž . Ž . Ž .2 3 3 1 3 3

1 y 2 x DP y lŽ .3 36 6

We analyze CASE 0 first. We know that, in this case, we have two
0 Ž 0. 0 Ž 0.restpoints, which we call x ' 0, 0, x and x ' 0, 0, x . We evaluateˆ ˆ ˇ ˇ3 3

Žthe Jacobian when x , x , and l are equal to their limiting value i.e.,1 2
. � Ž 0. Žzero . The corresponding eigenvalues are 0, y3 q 7x r12, y3 q3

0. 4 Ž . Ž7x r12 . There are then two identical negative eigenvalues since any3
30 .limiting x - for CASE 0 , while the third eigenvalue is equal to zero.3 7

To determine the stability properties of the perturbed system, the sign of
the eigenvalue whose limit is zero becomes crucial given that continuity of
Ž .J . ensures that the other two will be negative, for any l sufficiently small.

Ž . 0We now linearize the restpoints as a function of l around NE . We set
Ž . Ž 0 . Ž .x l, d ' d l, d l, x q d l , where d ' d , d , d denotes the vectorˇ 1 2 3 3 1 2 3

collecting the coefficients of the linearized system. We then evaluate the
following expression:

­ det J x , l ¬Ž .Ž .xŽl , d .˜0 0f x , d ' lim .Ž .3 ­llª0

Ž Ž .. 0We do so because det J x, l , which is equal to zero ; x g NE , will
preserve the sign of the third eigenvalue, given that the sign of the other

Ž . 0two will stay constant and negative when x is sufficiently close to NE
and l is sufficiently small. For CASE 0 we get the following result:

y54 q x 0 252 q 294 x 0 q d q dŽ .Ž .3 3 1 2
2 30 0 0= 9 y 39 x q 63 x y 49 xŽ . Ž .ž /3 3 30 0f x , d s . 19Ž .Ž .3 864
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Ž . Ž 0Ž 0 ..We first notice that 19 does not depend on d . To evaluate sign f x , d3 3
we only need to get estimates of d and d , the linear coefficients which1 2
measure the responsiveness of the equilibrium values of x , i s 1, 2 toi

d ˜Ž . <small changes in l. We do so by setting lim D x, l s 0 andxŽl, d .˜lª 0 dl

� 04solving for d , d , x . There are two alternative set of solutions; each of1 2 3
them corresponds to each of the restpoints. In particular,

'23 y 49b y 7 1 y b 46 y 49bŽ .
0 0ˇ ˇd s d s1 2 8

'23 y 49b q 7 1 y b 46 y 49bŽ .
0 0ˆ ˆd s d s .1 2 8

Ž .We evaluate the numerator of 19 for both sets of solutions, obtaining the
expressions

2 2'3 y7 q 322b y 343b q 49b y 23 1 y 46b q 49bŽ .ž /
f̌ b sŽ .

10
20Ž .

2863 y 147476b q 882882b 2 y 1546244b 3

4 2'q823543b q k 146b q 49b
f̂ b s , 21Ž . Ž .

1000

Ž 2 3.with k s 3887 y 60123b q 165669b y 117649b .
ˇ0 ˆ0Ž . Ž .Both f b and f b are plotted in Fig. 4. As the diagram shows,

'23 y 4 300 0ˇ ˆŽ . w x Ž .f b is always negative in the domain 0, , whereas f b is not.49
In consequence, x 0 is asymptotically stable whereas x 0 is not.ˇ ˆ

We now move on to CASE 1. Here we have a unique restpoint, which
1 Ž 1.we call x ' 1, 1, x . The eigenvalues of the unperturbed dynamics are asˆ 3̂
� Ž . Ž . 4 Žfollows: 0, 1 y 2 x r3, 1 y 2 x r3 . As in CASE 0, there are two iden-3 3

1. Ž .tical negative eigenvalues given that x ) , and the remaining eigen-3 2
Ž . Žvalue is equal to zero. By analogy with CASE 0, we define x l ' 1 y˜

d0 ˜. Ž . <d l, 1 y d l, x q d l and solve lim D x, l s 0 to get esti-xŽl, d .˜1 2 3 3 lª 0 dl

Žmates of d . The unique feasible solution corresponding to the unique
.limiting equilibrium takes the following form:

2'3 2 y 4b q 9 y 16b q 16bž /31 1ˆ ˆd s d s .1 2 2
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FIG. 4. Asymptotic stability of the dynamic with drift.

Ž . Ž .The function corresponding to 20 and 21 now takes the form

'24 ya q 2 y 4b aŽ .Ž .1f̂ b s ,Ž .
5

ˆ1Ž .with a s 9 y 16b. The function f b is also plotted in Fig. 4. As the
ˆ1 1Ž . Ž .diagram shows, f b stays negative ;b g 0, 1 . Thus, x is asymptoti-ˆ

cally stable under any drift configuration.

Proof of Proposition 7. For any given arbitrary preference profiles
ˆ ˆ i i� 4R g F, with R / R, m s m f S ¬ R s R , R s R is weaklyi i i iy1 iy1 iq1 iq1

ˆ i i� 4dominated by m s m g S ¬ R s R , R s R , which in turnˆ i i i iy1 iy1 iq1 iq1
Ž Ž .. Ž . m iŽ . m iŽ .implies that, for any interior solution x t, x 0 of 9 , x t s yx ti̇ i

and, therefore,

lim x m i t s 0 22Ž . Ž .i
tª`

ˆ ˆfor any m f S . Let D denote the face of D spanned by the restrictedi i

ˆ ˆ ˆŽ . < Ž . � 5 5 4game G, R , with B « s x g D : x y D F « . An implication ofˆ=S i

ˆŽ . Ž .22 is that D is globally interior attracting for the best-reply dynamics 9 ,
as it contains the set of undominated mixed strategies. Furthermore, for all
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ˆŽ . <i g I, s is a strictly dominant strategy for game G, R . This impliesˆˆ =Si i

Ž .that there must exist some positive constants « and T « such that
ˆ ˆŽ . Ž . Ž . Ž . Ž .BR x s s for any x g B « and x t g B « for any t G T « . We canˆ

Ž . Ž . w Ž .xevaluate T « explicitly solving 1 y « exp yT « s « :

1
T « s ln y 1 . 23Ž . Ž .

«

Ž . Ž .By virtue of 23 , T « - `. Therefore, the system of differential equa-
tions

x m i t s 1 y x m i t , m s sŽ . Ž .˙ ˆi i i i
24Ž .

m mi ix t s yx t , m / sŽ . Ž .˙ ˆi i i i

Ž .defines the unique interior solution of 9 for t sufficiently large. This, in
Ž .turn, implies lim x t s s.̂t ª`
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