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STOCHASTIC REPLICATOR DYNAMICS*

By Antonio Cabrales1

Universitat Pompeu Fabra, Spain

This article studies the replicator dynamics in the presence of shocks. I show
that under these dynamics, strategies that do not survive the iterated deletion
of strictly dominated strategies are eliminated in the long run, even in the pres-
ence of nonvanishing perturbations. I also give an example that shows that the
stochastic dynamics in this article have equilibrium selection properties that dif-
fer from other dynamics in the literature.

1. introduction

This article studies a stochastic version of the replicator dynamics. These dynamics
model agents with a very low degree of sophistication. My main conclusion is that
despite the agents’ lack of sophistication, even in the presence of perturbations of
several kinds, the dynamics give little weight to strategies that do not survive the
iterated deletion of strictly dominated strategies in the long run. I also show that the
size of the basin of attraction of an equilibrium under the deterministic version of
the dynamics need not determine the equilibrium selected in the stochastic analogue
of the dynamics.

When considering the replicator dynamics, it is useful to think of a large popu-
lation of agents who use pure strategies and are randomly matched to play against
each other. The growth rate of the proportion of players using a certain pure strat-
egy is the difference between the expected payoff of that pure strategy, given the
proportions of players using every pure strategy, and the average expected payoff
in that population. These dynamics can be the result of a process by which agents
with very little information learn to play the game or imitate more successful actions.
Binmore and Samuelson (1997), Börgers and Sarin (1997), and Schlag (1998) have
models where the replicator dynamics are motivated this way. In contrast to other
dynamics that have been proposed, like the best-response dynamics of Matsui (1991),
the fictitious play of Brown (1951) and Robinson (1951), and the learning papers of
Milgrom and Roberts (1990) and Fudenberg and Kreps (1994, 1995), the replicator
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dynamics have the characteristic that the strategies whose weight in the population
increase need not be best responses and could even be strictly dominated strategies.
Still, if selection operates slowly enough or in continuous time, then all limit points
of the dynamics are best responses to time averages of past play (see, e.g., Cabrales
and Sobel, 1992).

The history of stochastic selection processes is not long, in part because the tech-
niques are relatively new. A seminal article is that by Foster and Young (1990), who
develop a model where stochastic perturbations are constantly affecting the replica-
tor dynamics. Kandori et al. (1993) and Young (1993) consider models where the
randomness comes from the stochastic arrival of newcomers, who replace some play-
ers who leave the population and start by playing something at random. In the three
previous models, the processes have ergodic distributions, and the authors arrive at
predictions by looking at the limit of these ergodic distributions when the variance
of the noise goes to zero. This approach has proven useful because it has been able
to select between strict equilibria, something most refinements were unable to do.
An exception is Crawford (1995), where it is shown that in some games, strategic un-
certainty and adaptive adjustments can give rise to systematic equilibrium selection
patterns without having to depend on an ergodic distribution.

I generalize a model developed by Fudenberg and Harris (1992) for symmetric
games with two players and two strategies to games with a finite number of players
and a finite number of strategies. I define the replicator dynamics in continuous
time, and the state variables are points in the simplex. Foster and Young (1990) use
a similar model, but they only have one type of shock, while I distinguish between
aggregate shocks to payoffs and mutations. There are two types of shocks in my
model. First, there are individual, uncorrelated changes of strategy. These result from
the the entry of uninformed players. Since I assume that there is no correlation in
these changes and the population is very large, these shocks are deterministic shifts
to the replicator dynamics. Second, there are aggregate shocks that affect the payoffs
to all users of a strategy in the same way. These shocks could be variations of demand
in an oligopoly game or changes in sunk costs for an entry game, and so on. These
shocks will not average out; they constitute the part of my model that is explicitly
stochastic. As a first approximation, they are considered uncorrelated across time.
Since the model is formulated in continuous time, Wiener processes are an adequate
way to model them.

Section 2 of this article describes the model. In Section 3 I show that strategies that
do not survive the iterated deletion of strictly dominated strategies become rare when
selection has been operating for a long time. In Section 4 I show that the equilibrium
selected by the dynamics used in my article may be different from the one that would
be selected by the dynamics used by Kandori et al. (1993). I do this by showing an
example where their dynamics (when suitably extended to games with more than two
players) select a Pareto-inferior equilibrium, while the ones I use select a Pareto-
superior equilibrium when the number of players is large enough. For 2 × 2 games,
the dynamics of Kandori et al. (1993) and the dynamics that I study [which in that
class of games are also the dynamics of Fudenberg and Harris (1992)] select the same
equilibria, which could lead to the wrong conclusion that the equilibrium-selection
properties of both dynamics are the same. The Appendix gathers the proofs.
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2. replicator dynamics with aggregate shocks and mutations

The game considered here will have finitely many pure strategies and players.
There are N players, and the pure strategy set for the ith player is Pi, which has ni
strategies. Player i’s payoff function is ui � ∏N

k=1 P
k → R. Let Sn denote the standard

n − 1 dimensional simplex, xi a generic member of Sni for any player i, and x−i a
generic element of S−i = ∏j �=i S

nj . ui is extended to the space of mixed strategies in
the usual way. Thus we represent by ui�xi� x−i� the payoff to agent i of using strategy
xi when the other players are using the strategy x−i. Any strategy α ∈ Pi will be
identified notationally with the mixed strategy that gives probability one to the pure
strategy α.

Suppose that there are N populations of agents, one for each player, and each of
them contains a continuum of individuals (if the game were symmetric, we could use
just one population for all the players). The biologic interpretation of the replicator
dynamics is that they describe the evolution of the proportion of members of each
population playing every strategy. Payoffs in this case represent reproductive fitness,
or the number of successors for the user of a strategy given the makeup of the
population.

A more interesting way to think about this for an economist is given by Schlag
(1998). He assumes that agents play a random-matching game in a large population.
They learn the actual payoff of another (randomly chosen) agent. If the agents have
a rule of action that is “improving” (the expected payoff increases with respect to
the present one) for every possible game and state of the population and “unbiased”
(depends only on payoffs, not on strategy labels), the rule is going to give a probability
of switching to the other agent’s strategy that is proportional to the difference in
payoffs. This leads to aggregate dynamics that are like the replicator dynamics.

Two other articles relate the replicator dynamics to learning. Börgers and Sarin
(1997) show that in the continuous time limit the replicator dynamics are the same
as the dynamics arising from the learning model in Cross (1973) [which itself is a
special case of Bush and Mosteller’s (1951, 1955) stochastic learning theory]. Sarin
(1993) axiomatizes Cross’s learning dynamics.

The replicator dynamics have a number of interesting properties. This article ex-
plores the extension of one of them, namely, the elimination of strategies that do
not survive the iterated deletion of strictly dominated strategies, to a context with
aggregate stochastic shocks and mutations. This property was first studied in de-
terministic contexts by Samuelson and Zhang (1992). The deterministic replicator
dynamics have other properties that are surveyed in the books of Hofbauer and Sig-
mund (1984), Cressman (1992), Weibull (1995), Vega-Redondo (1996), Samuelson
(1997), and Fudenberg and Levine (1998).

I want to consider now the introduction of shocks to the replicator dynamics. The
first type of shock includes that which affect the payoffs of all users of a strategy in
the same way. It could be a random change in total demand in an oligopoly game
where oligopolists face the same demand curve, a change in the legal system that
makes certain strategies more costly, or a change in factor prices that alters the
cost of using a technology. I will introduce such shocks by using both the biologic
interpretation to the replicator dynamics and the learning interpretation to which
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I alluded before. The interest of doing it both ways is that they lead to somewhat
different formulations, unlike in the deterministic case.

Let riα be the size of that part of the ith player population that plays strategy α, and
let Ri = ∑ni

α=1 r
i
α. Let x

i
α be the proportion of members of the ith player population

using strategy α, that is, xiα = riα/R
i. Divide time into discrete periods of length τ.

At a particular instant in time, a player in the ith population is randomly matched
with a player from each of the other N − 1 populations. Let ηl�t� be a collection of
d i.i.d. random variables with mean zero, variance τ, and support contained in 
η�η�
and σiα a d-dimensional vector of positive constants.

In the biologic interpretation, individuals play their genetically given strategy, and
payoffs are related to reproductive success. Total payoffs for a member of the i player
population who is playing pure strategy α in period t are given by ui
α� x−i�t��τ +∑d
l=1 σ

i
γlηl�t�. Every period the users of all strategies reproduce after playing the

game. Reproduction is asexual, and the offspring inherit the strategies of the parent
(i.e., strategies breed true). The number of successors of each individual is given by
the sum of the background fitness Bi
t� r�t��τ (the number of successors independent
of the game), plus the payoffs from playing the game. After reproduction, a fraction
Di
t� r�t��τ of the users of all strategies (except the newborn) dies in every period.2

We have then

riα�t + τ� = riα�t�
{
1−Di
t� r�t��τ + Bi
t� r�t��τ + ui
α� x−i�t��τ +

d∑
l=1

σiγlηl�t�
}

(1)

Let W be a d-dimensional Wiener process (these are stochastic processes with
continuous sample paths and independent increments with mean zero). By let-
ting the period length τ go to zero, we can obtain the continuous time version of
Equation (1):

driα�t� = riα�t�
({
Bi
t� r�t�� −Di
t� r�t�� + ui
α� x−i�t��} dt + d∑

l=1

σiαldWl�t�
)

(2)

By Itô’s rule, which is the analogue in differential stochastic calculus to the chain
rule in ordinary calculus (see, i.e., Karatzas and Shreve, 1991, p. 153), since xiα�t� =
riα�t�/Ri�t� and riα�t� is given by Equation (2), I obtain:

dxiα�t� = xiα�t�
{
ui
α� x−i�t��dt +

d∑
l=1

σiαldWl�t� −
ni∑
β=1

xiβ�t�ui
β� x−i�t��dt(3)

−
ni∑
β=1

d∑
l=1

xiβ�t�σiβldWl�t�
}

− xiα�t�
[
ni∑
β=1

d∑
l=1

xiβ�t�σiαlσiβl−
ni∑
β=1

ni∑
γ=1

d∑
l=1

xiγ�t�xiβ�t�σiβlσiγl
]
dt

2 Both the death rate and the background fitness depend on the total size of the population. In this
way, the model can accommodate scenarios that avoid explosive population growth or extinctions.
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There is another way to arrive at the stochastic replicator dynamics that leads to a
slightly different formulation.

Assume that agents play the game repeatedly and change their actions only when
the action they are currently using does not perform better than a preset standard and
that they choose among the alternatives with a probability proportional to their pres-
ence in the population. These assumptions were used, in a consumers’ choice model,
by Smallwood and Conlisk (1979). They are also used to motivate the (deterministic)
replicator dynamics by Binmore et al. (1995).

Divide again time into discrete periods of length τ. Total payoffs now are
ui
α� x−i�t��τ + ∑d

l=1 σ
i
γlηl�t� plus an idiosyncratic uniformly distributed random

shock with support 
−A/2�A/2�. Agents change their strategies when total payoff
is less than a certain acceptable level, which we normalize to 0. Let’s assume that
A�η�η are such that

max
i�α�β

ui�α�β� + d max
i�α�l

σiαlη ≤ A

2
and min

i�α�β
ui�α�β� + d max

i�α�l
σiαlη ≥ −A

2

With these constraints, any strategy at any time can either give a payoff above the
acceptable level or fail to do so with positive probability. If the performance of a
strategy is adequate, agents keep using it. If it is not, they choose strategy γ in the
next period with probability xiγ�t�. The probability that strategy α fails for a player i
is equal to

piα�t� =
−ui
α� x−i�t��τ −∑d

l=1 σ
i
αlηl�t�

A

Let’s assume that the proportion of the population that experiences a payoff be-
low the satisfaction level is exactly piα�t� and the proportion of them who switch to
strategy γ is exactly xiγ�t�. The dynamics that result for the population shares are

xiα�t + τ� = xiα�t�
1− piα�t�� +
ni∑
γ=1

xiγ�t�piγ�t�(4)

We can rewrite Equation (1) in the following way:

xiα�t + τ� = xiα�t� +
xiα�t�
A

{
ui
α� x−i�t��τ +

d∑
l=1

σiαlηl�t� − ui
xi�t�� x−i�t��τ(5)

−
ni∑
β=1

d∑
l=1

xiβ�t�σiβlηl�t�
}

By letting the period length τ go to zero, we can obtain the continuous time version:

dxiα�t� = xiα�t�
{
ui
α� x−i�t��dt +

d∑
l=1

σiαldWl�t� −
ni∑
β=1

xiβ�t�ui
β� x−i�t��dt(6)

−
ni∑
β=1

d∑
l=1

xiβ�t�σiβldWl�t�
}
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Although we assume that the agents take decisions about changing strategies based
on their expected payoff ui
α� x−i�t��, we also could have assumed that they observe
their actual payoff ui�α� k�, since averaging over the (infinite) population would have
led to Equation (5) as well. Thus the equilibrium-selection properties of Section 4 are
independent of this assumption. This contrasts with finite population models. Robson
and Vega-Redondo (1996) show that whether one observes the expected payoff, as
in Kandori et al. (1993), or the actual payoff can affect equilibrium selection in that
type of model.

Equations (3) and (6) differ by the term in the second line of Equation (3). This
term does not have a qualitative effect in the results of this article (in fact, it would
only change a bound on a variance in the main result), but it reminds us that in
stochastic models like this, modeling decisions that are innocuous in deterministic
models, such as interpreting payoffs as number of successors or as a tool for players
to decide if the present strategy is adequate, can have implications. I will use Equation
(3) to be consistent with Fudenberg and Harris (1992).

One feature of the replicator dynamics is that if a strategy disappears or is never in
the population, it will never reappear again. This is true because one cannot imitate
a strategy that nobody is using or inherit it in a biologic context. And it will be true
independently of the payoff of that strategy.

I want to incorporate in the model the possibility that strategies that are not used
by anybody in a given period start to be used in later periods, while retaining the
assumption that the agents are not sophisticated. For this reason, I assume that new
players replace part of the population at all times and that some of them adopt
strategies in a random way that is independent of the actions of both old players
and other new players. I model the effect of these new players in the dynamics as a
deterministic shock that modifies the transition rates for all periods. The aggregate
effect of the newcomers that take actions at random is modeled in a deterministic
fashion because their actions are assumed to be uncorrelated across individuals, and
the population is so large that we can invoke the law of large numbers to assume that
the average of these actions is not random. By the next time these new players can
change their strategies, they start behaving like other members of the population. By
analogy with the biologic literature, I call these newcomers mutants and their actions
mutations.

Adding the mutations to Equation (2) as in Fudenberg and Harris (1992), we get

driα�t� = riα�t�
{
ui
α� x−i�t��dt +

d∑
l=1

σiαldWl�t�
}

(7)

+
ni∑
β=1


λiαβriβ�t� − λiβαriα�t��dt

λiαβ is the rate at which members of population i that are using strategy β will be
replaced in a given period by players who choose strategy α. I will call the λiαβ’s
mutation rates. Notice that λiαα can have any value without affecting the dynamics.
Choose, for example, λiαα = minβ �=α λiαβ.
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Applying Itô’s rule,

dxiα�t� = xiα�t�
{
ui
α� x−i�t��dt +

d∑
l=1

σiαldWl�t� −
ni∑
β=1

xiβ�t�ui
β� x−i�t��dt(8)

−
ni∑
β=1

d∑
l=1

xiβ�t�σiβldWl�t�
}

−xiα�t�
[
ni∑
β=1

d∑
l=1

xiβ�t�σiαlσiβl −
ni∑
β=1

ni∑
γ=1

d∑
l=1

xiγ�t�xiβ�t�σiβlσiγl
]
dt

+
ni∑
β=1


λiαβxiβ�t� − λiβαxiα�t��dt

−xiα�t�
[
ni∑
γ=1

ni∑
β=1

λiγβx
i
β�t� −

ni∑
γ=1

ni∑
β=1

λiβγx
i
γ�t�

]
dt

But notice that by relabeling the summation indices we obtain

n1∑
γ=1

ni∑
β=1

λiγβx
i
β�t� −

ni∑
γ=1

ni∑
β=1

λiβγx
i
γ�t� =

n1∑
γ=1

ni∑
β=1

λiγβx
i
β�t� −

ni∑
β=1

ni∑
γ=1

λiγβx
i
β�t� = 0

This implies that we can rewrite Equation (8) as

dxiα�t� =xiα�t�
{
ui
α� x−i�t��dt +

d∑
l=1

σiαldWl�t� −
ni∑
β=1

xiβ�t�ui
β� x−i�t��dt(9)

−
ni∑
β=1

d∑
l=1

xiβ�t�σiβldWl�t�
}

−xiα�t�
[
ni∑
β=1

d∑
l=1

xiβ�t�σiαlσiβl −
ni∑
β=1

ni∑
γ=1

d∑
l=1

xiγ�t�xiβ�t�σiβlσiγl
]
dt

+
ni∑
β=1


λiαβxiβ�t� − λiβαxiα�t��dt

The mutation term in Equation (9), which I use for simplicity and consistence
with Fudenberg and Harris (1992), is the first type of mutation term that Boylan
(1994, on p. 15, attributed to Burger, 1989) describes. Boylan (1994) proposes other
types of mutations, but for the purposes of this article, the more general type would
give the same results. However, mutations can, in general, be quite important for
equilibrium selection. Binmore et al. (1995) and Binmore and Samuelson (1996) show
that depending on the exact form of the evolutionary drift/mutation, even equilibria
that are not subgame perfect can be asymptotically stable.
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3. strategies that survive the iterated deletion of strictly
dominated strategies

One of the first questions to arise when considering selection dynamics that come
from less than rational behavior is whether the outcomes generated resemble the
ones predicted from a rationality perspective so that as-if-rational type arguments
can be made. I will need some definitions for this discussion.

Strategy x′ ∈ Sni is strictly dominated in Hi ⊂ Sni relative to H−i ⊂ �j �=iSnj if there
exists x ∈ Hi such that ui�x� y� > ui�x′� y� for all y ∈ H−i. Let Di�Hi�H−i� be the set
of mixed strategies in Hi that are not strictly dominated in Hi relative to H−i. Let N
sequences of sets be defined as follows:

H
�0�
i = Sni H

�0�
−i = �j �=iS

nj
j i = 1� !!!�N

H
�n�
i = Di�H�n−1�

i �H
�n−1�
−i � H

�n�
−i = �j �=iH�n�

j for n > 0� i = 1� ! ! ! �N

Then x′ ∈ Sni survives strict iterated admissibility (SIA) if x′ ∈ H∞
i , where H∞

i =⋂∞
n=0H

�n�
i .

Strategies that do not survive SIA are not justifiable for a rational player, so if
a nonnegligible part of the population plays them a nonvanishing proportion of the
time, the dynamics cannot be thought of as behaving in a way that mimics the tra-
ditional economic notion of rationality. The usual justification for strong rationality
assumptions is that in the long run, behavior is close to rational due to unspecified
selection processes. It is interesting, then, to find whether the replicator dynamics
eliminate all but admissible strategies in the long run. This is true for continuous
time replicator dynamics, as shown by Samuelson and Zhang (1992), but not for the
discrete time case, as shown in Dekel and Scotchmer (1992). Nevertheless, Cabrales
and Sobel (1992) show that the result can be partially recovered and give sufficient
conditions for discrete time dynamics to avoid in the limit strategies that do not sur-
vive SIA. The question now is whether a similar result is true for a model such as
the one proposed above.

The payoff function with respect to which I consider the strict domination is the
average (over the aggregate noise, the noise from mutations, and the frequencies
with which actions are adopted among i’s opponents) payoff function ui�α� x�. Total
payoff, which includes the aggregate shocks, can be different from ui�α� x�, although,
on average, they coincide. I will show that the elimination of non-SIA strategies by
the replicator dynamics is maintained even when transitory payoff perturbations and
mutations are added to the model.

Proposition 1A demonstrates that if there are no mutation rates and the dominat-
ing strategies are initially present in the population, the weight of non-SIA strategies
converges to zero as time goes to infinity. Proposition 1B demonstrates that if muta-
tion rates are small and selection has been operating for a long time, the probability
that nonnegligible proportions of the population are playing a non-SIA strategy is
small. I cannot say that the weight of a non-SIA strategy will be small with probabil-
ity one because it could happen that a streak of good luck makes the proportion of
users of a generally bad strategy grow for a while.
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These results do not depend on the existence of an ergodic distribution, and it is
not necessary for variances to be infinitely small. This is interesting because many
other results in the literature of stochastic dynamics concern the limit of the ergodic
distribution as the variance of the aggregate shocks goes to zero [see, for example,
the review of stochastic dynamics in Vega-Redondo (1996) or Fudenberg and Levine
(1998)].

Let r be any ni × 1 vector and

V ir �t� = �niα=1
xiα�t��rα

Let λ = maxα�β�i�λiαβ�, and λ = minα�β�i�λiαβ�.
Suppose that r is a strategy vector for player i. If r is a non-SIA strategy and V ir is

zero, at least one of the pure strategies that have positive weight under r has to be
zero.

Proposition 1A. Let strategy p ∈ Sni fail strict iterated admissibility. If λiαβ = 0 for
all α�β and if xiα�0� > 0 for all α, then there is σ̄p > 0 such that if maxα�i�l�σiαl� < σ̄p,

lim
t→∞

V ip�t� = 0 a!s!

Proposition 1B. Let pure strategy γ ∈ Sni , fail strict iterated admissibility. If λ/λ
is bounded, as we let λ→ 0, there is σ̄p > 0 such that if maxα�i�l�σiαl� < σ̄p,

lim
λ→0

{
lim sup
t→∞

E
xiγ�t��
}
= 0

Although strategy γ in Proposition 1B is a pure strategy, it can be dominated by
any mixed strategy. Proposition 1B implies that the probability that the weight of a
non-SIA strategy is larger than any given positive number K, which may be as small
as we want, will be very close to zero when selection has been operating for a long
enough time provided that the variance of the noise is below a certain bound and the
mutation rates are both small and not orders of magnitude apart from one another.

The proof of Proposition 1A is based on two main facts. One is that the determin-
istic part of the flow tends to make V ip small (when the variances of the shocks are
small). The other is that the stochastic shocks average out to zero by the law of large
numbers.

The only moderately mysterious part of Proposition 1A (which recurs in Proposi-
tion 1B) is that one needs to have a bound in the variance of the shocks, and the
smaller the advantage of the dominating strategy, the stricter is the bound. This hap-
pens on account of an extra term containing the variances that appears after the
application of Itô’s rule. This term appears because V ip is a nonlinear function of
random variables, and the extra term containing the variances is something like a
second-order term from a Taylor series expansion. When the variances are small
enough, we can be sure that they will not reverse the effect of the domination, but if
the variance is large, we cannot be sure. One can conclude from this that in a world
with randomness, we can only be certain that a dominated strategy will eventually
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vanish (or be unimportant most of the time) if it is quite clearly dominated (or the
randomness is unimportant).

In the case of the process with mutations, we have to consider two forces. One is
the force that tends to make xiγ small because it is strictly dominated. This one is
present as long as xiγ is not too small (where by “too small” I understand an order
of magnitude smaller than the mutations). The other is the mutations, which tend to
make xiγ grow as long as it is small. The proof shows that if λ is small, the proportion
of time when the xiγ is large has to be small, because the force that really counts
when xiγ is large is the one that is related to payoffs.

Something worth noting about Proposition 1B is that xiγ will sometimes be large,
even in the limit as t → ∞ (although this will happen more and more infrequently as
λ becomes smaller). This contrasts with what happens when there are no mutations,
and it requires some explanation. The first thing to notice is that the mutations act
as a sort of barrier so that xiγ cannot be for too long below some value λxiγ . This is
important because in a model with shocks to payoffs the way in which the weight of
a dominated strategy becomes large is through a series of shocks that make it look
good for a while. But the shocks have to be proportionally larger to make xiγ large
the smaller the departure point is. In the model with mutations, xiγ always returns
to λxiγ through deterministic drift, and from that level the shocks that make xiγ grow
substantially are of a fixed size. In the model without mutations, xiγ has no lower
bound, and once it hits lower and lower levels, the shocks necessary to make xiγ large
become less and less likely.

4. relationship with other stochastic dynamics

I will now present an example that shows that the stochastic dynamics I use can
have an ergodic distribution whose weight is concentrated, when both mutation rates
and the variances of the stochastic shocks are small, on an equilibrium that is not
the one with the largest basin of attraction for the deterministic replicator dynamics
if the number of players N is large.

Suppose that individuals are randomly matched every period in groups of N players
to play a game that has two strategies. Since the game I will present is symmetric,
all the players in a group can be assumed to come from the same population. The
strategy played by player i is denoted αi, and αi can be either 1 or 2. The payoff for
player i is

ui�α1� !!!� αN� = a min
j
�αj� − bαi

where a > b. Given the random matching structure of the game, if we let x be the
proportion of people in the population using strategy 2, the expected payoff for player
i using strategy αi = 1 will be equal to

E
(
a min

j
�αj�

∣∣∣x)− bαi = a− b
The expected payoff for player i using strategy αi = 2 will be equal to

E
(
a min

j
�αj�

∣∣∣x)− bαi = 2axN−1 + a�1− xN−1� − 2b = axN−1 + a− 2b



STOCHASTIC REPLICATOR DYNAMICS 461

This game has two strict equilibria in pure strategies that are Pareto ranked. The
deterministic replicator dynamics converge to one of them from all initial states ex-
cept from the unstable mixed-strategy equilibrium. The size of the basin of attraction
of the Pareto-superior equilibrium becomes smaller as N gets larger, to the point that
it converges to zero as N goes to infinity (to be more precise, the basin of attraction
of the high-effort equilibrium becomes smaller than the other when 1/2N−1 < b/a).
However, when a > 2b, and the number of players is 2, the the basin of attrac-
tion of the Pareto-superior equilibrium is larger than the other equilibrium’s basin of
attraction (in this case, the Pareto-superior equilibrium is also risk-dominant).

Assume that d = 2� σ11 = σ1� σ12 = 0� σ21 = 0, and σ22 = σ2. Then the evolution
of x can be modeled as (from Equation (9)

dx�t� =
(
x�t�
1− x�t���σ2

1 
1− x�t�� − σ2
2x�t� + ax�t�N−1 − b�(10)

+λ2
1− x�t�� − λ1x�t�
)
dt

+x�t�
1− x�t��
σ1dW1�t� + σ2 dW2�t��

Let σ =
√
σ2

1 + σ2
2 and W �t� = 
σ1W1�t� + σ2W2�t��/σ . Then

dx�t� =
{
x�t�
1− x�t��
σ2

1 − σ2x�t� + ax�t�N−1 − b� + λ2
1− x�t��(11)

−λ1x�t�
}
dt + x�t�
1− x�t��σ dW �t�

Since W �t� = 
σ1W1�t�+σ2W2�t��/σ is a standard Wiener process, we will able to use
the theory of one-dimensional stochastic differential equations to get closed forms
for the ergodic distribution of x�t�.

Proposition 2. (a) The process x�t� defined in Equation �11� has an ergodic
distribution. (b) If a > 2b, the limit of the ergodic distribution puts probability one on
the state x = 1 where all the population is using the high effort strategy, as λ1� λ2� σ1 and
σ2 go to zero, if λ1/λ2 is bounded.

Proof. See the Appendix.

This equilibrium selection can be explained intuitively in terms of the imitation
models underlying the replicator dynamics. The equilibrium that has more weight
under the ergodic distribution is the one for which the shocks to payoffs that convince
players to switch equilibrium are less likely to arise. In this model, the difficulty in
changing from a state where most of the people are playing one strategy to one
where mostly the other one is played lies in getting the first few people to defect
from the popular strategy. The reason is that it is more difficult to imitate something
that almost nobody is doing. The first few defectors have to see that playing the other
strategy has been good lately, and this will happen when payoffs suffer a shock that
makes the strategy played by the majority less attractive than the alternative. Then
it is necessary to compare how likely are the shocks that move the dynamics from
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the different equilibria to know the ergodic distribution. When a > 2b, the shocks
necessary to move the dynamics from the Pareto-dominant equilibrium to the other
one are much more unlikely than the shocks that produce the opposite transition, if
the variance of the shocks is small. Thus the Pareto-dominant equilibrium has more
weight under the ergodic distribution.

The ergodic distribution would concentrate its weight on a different equilibrium
for the dynamics that Kandori et al. (1993) study when N is large. In this case, their
dynamics would select the Pareto-inferior equilibrium, while the ones I use select the
Pareto-superior equilibrium.

In the model of Kandori et al. (1993), the factor that determines which equilibrium
has more weight under the ergodic distribution is the number of mutations necessary
for the rest of the population to start thinking that it is a good idea to change their
action. When N is large, fewer mutants are necessary to change from the Pareto-
dominant equilibrium to the Pareto-inferior equilibrium than the ones necessary to
do the opposite transition. Thus the Pareto-dominated equilibrium has more weight
under the ergodic distribution.

When there are only two players in each match, the two criteria, size of the shocks
and number of mutants, coincide, which is why the articles of Fudenberg and Harris
(1992) and Kandori et al. (1993) give the same conclusions in this respect.

The key difference is that in 2× 2 games the payoffs are linear in the proportion of
players using every pure strategy, while in the game with more than two players the
payoffs are nonlinear. In the example, the nonlinearity makes the basin of attraction,
which in this case is related to the number of mutants necessary to switch equilbria,
of the Pareto-dominant equilibrium smaller as the number of player grows. We have
seen, however, that instead of the numbers of mutants/sizes of the basins of attraction,
the determinant of equilibrium selection in the case of aggregate shocks is the relative
differences of payoffs between the strategies at the different equilibria. In 2 × 2
games, both criteria coincide due to linearity in the other player’s strategy, but with
more players, the difference becomes apparent.

Young and Foster (1991) consider an example in which the set of equilibria with
the largest basin of attraction would not be the one to which the ergodic distribution
gives the highest weight. In their example, however, the dynamics of Kandori et al.
(1993) would have the same limiting ergodic distribution. The reason is that Young
and Foster (1991) study an infinitely repeated prisoner’s dilemma where the players
are restricted to three strategies: always cooperate (C), always defect (D), and tit-for-
tat (T). This game has a connected set of equilibria, all of which are mixtures of C
and T (call this set CT), and a pure-strategy equilibrium where D is the only strategy
used. The set CT has a larger basin of attraction than the state where everybody plays
D. But one of the states in CT is just one mutation away from the basin of attraction
of the state where everybody plays D, and from any state in CT to any of the other
states in CT there is also only one mutation. On the other hand, the state where
all players choose D represents a strict equilibrium, and more than one mutation is
necessary to exit from it. Since fewer mutations are necessary to go from CT to D
than from D to CT, the ergodic distribution puts all the weight in D when mutation
rates are very small.
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Binmore and Samuelson (1994), Robson and Vega-Redondo (1996), and Vega-
Redondo (1993) also obtain equilibrium selection properties that need not coincide
with those of Kandori et al. (1993).

5. appendix

I need some notation before I can proceed with the proof of the propositions. Let

mα�x� λ� = ui�α� x−i� − ui�xi� x−i� −
∑
β

λiβα!

The function mα�x� λ� gathers all the terms in Equation (9) that are multiplied by xiα
(and are not multiplied by the variances).

M = max
x�λ�α

��mα�x� λ���

σ = max
α�i�l

�σiαl�

Let δβα = 0 if β �= α and δαα = 1.

At
αs =

ni∑
β=1

d∑
l=1

∫ t
s

δβα − xiα�u��σiαldWl�u�

At
αs gathers all the stochastic terms in dxiα and integrates them from s to t.
Let p be any ni × 1 vector, and

V ip�t� = �niα=1
xiα�t��pα

By Itô’s rule,

dV ip�t� =
ni∑
α=1

pαmα
xi�t��V ip�t�dt

−
ni∑
α=1

pα

[
ni∑
β=1

d∑
l=1

xiβ�t�σiαlσiβl −
ni∑
β=1

ni∑
h=1

d∑
l=1

xih�t�xiβ�t�σiβlσihl
]
V ip�t�dt

+ 1
2

d∑
l=1

ni∑
α=1

ni∑
β=1

ni∑
γ=1

ni∑
ζ=1


δαγ − xiγ�t��
δβζ − xiζ�t��σiγlσiζl�pβ − δαβ�pαV ip�t�dt

+
ni∑
α=1

pα
xiα�t�

[
ni∑
β=1

λαβx
i
β�t�

]
V ip�t�dt+

ni∑
α=1

d∑
l=1

ni∑
γ=1


δαγ−xiγ�t��σiγlpαV ip�t�dW l�t�

I am going to collect now some terms and give them a name to save space. Let

A�p�ts =
ni∑
α=1

d∑
l=1

ni∑
γ=1

∫ t
s

δαγ − xiγ�u��σiγlpαdW l�u�
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A�p�ts collects the stochastic terms in dV ip and integrates from s to t. Let

asp�t� =
d∑
l=1

∫ t
s

{
ni∑
α=1

ni∑
γ=1


δαγ − xiγ�u��σiγlpα
}2

du

asp�t� is the quadratic variation of A�p�ts. Let

σp�t� = −
ni∑
α=1

pα

[
ni∑
β=1

d∑
l=1

xiβ�t�σiαlσiβl −
ni∑
β=1

ni∑
h=1

d∑
l=1

xih�t�xiβ�t�σiβlσihl
]

+ 1
2

d∑
l=1

ni∑
α=1

ni∑
β=1

ni∑
γ=1

ni∑
ζ=1


δαγ − xiγ�t��
δβζ − xiζ�t��σiγlσiζl�pβ − δαβ�pα

The function σp�t� collects the deterministic terms that are multiplied by the vari-
ances of the stochastic shocks. These are the terms that appear in stochastic calculus
but would not appear in deterministic calculus when using the chain rule.

In the remainder of this appendix, I will suppress the superindex when it is clear
that we are referring to strategies for player i, as well as the summation indices (α�β
from 1 to ni, l from 1 to d).

Lemma 1.

�a� xα�t� =exp

(∫ t
0
�mα
x�s�� λ� + σα�s��ds −

1
2
a0α�t� +At

α0

)
xα�0�(A.1)

+
∫ t
0
exp

(∫ t
s
�mα
x�u�� λ� + σα�u��du−

1
2
asα�t� +At

αs

)

×
[∑
β

λαβxβ�t�
]
ds

�b� Vp�t� = exp

(∫ t
0

{∑
α

pαmα
x�s�� λ� + σp�s�
}
ds(A.2)

− 1
2
a0p�t� +A�p�t0

)
Vp�0�

+
∫ t
0
exp

(∫ t
s

{∑
α

pαmα
x�u�� λ�+σp�u�
}
du − 1

2
asp�t�+A�p�ts

)

×∑
α

pα
xα�s�

[∑
β

λαβxβ�t�
]
Vp�s�ds
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�b′� Vp�t� = exp

(∫ t
0

{∑
α

pαmα
x�s�� λ� − f 
x�s�� + σp�s�
}
ds(A.3)

− 1
2
a0p�t� +A�p�t0

)
Vp�0�

+
∫ t
0
exp

(∫ t
s

{∑
α

pαmα
x�u�� λ� − f 
x�u�� + σp�u�
}
du

− 1
2
asp�t� +A�p�ts

)∑
α

pα
xα�s�

[∑
β

λαβxβ�t�
]
Vp�s�ds

+
∫ t
0
exp

(∫ t
s

{∑
α

pαmα
x�u�� λ� − f 
x�u�� + σp�u�
}

− 1
2
asp�t� +A�p�ts

)
f 
x�s��Vp�s�ds

Proof. See Karatzas and Shreve (1991, problem 5.6.15 on p. 361, solved on p.
393). �

To understand why this lemma is true, notice that the solution to the ordinary
differential equation

ẏ�t� = a�t�y�t� + g�t�(A.4)

is given by

y�t� = exp
[∫ t

0
a�s�ds

]
y�0� +

∫ t
0
exp

[∫ t
s
a�u�du

]
g�s�ds(A.5)

[You can check this by differentiating Equation (A.5).]
The xα�t� process is the solution of Equation (9), which is the stochastic differential

version of Equation (A.4). To go from Equation (9) to (A.1), which is the stochastic
analogue of Equation (A.5), since you cannot use differentiation, it is necessary to
use Itô’s rule, which introduces the extra term −1/2a0α�t�.

Proof of Proposition 1A. I will do the proof by induction on the rounds of
deletion of strictly dominated strategies. Let p �∈ H�1�

i . Then there is a p′ ∈ H�1�
i such

that

ui�p� x� − ui�p′� x� < 0 for all x ∈ H�0�
−i(A.6)

so that p′ strictly dominates p relative to the whole strategy space.
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Letm = maxx �
∑
α�pα − p′

α�mα�x� 0��. Notice thatm < 0 by Equation (A.6). Since
V ′
p�t� ≤ 1, Vp�t� ≤ Vp−p′ �t�. By Lemma 1(b),

V�p−p′ ��t� = exp

(∫ t
0

{∑
α

�pα − p′
α�mα
x�s�� 0� + σ�p−p′ ��s�

}
ds

− 1
2
as�p−p′ ��t� +A
�p− p′��t0

)
V�p−p′ ��0�

By the definition of m, and given that σ�p−p′ ��s� is bounded by 4σ2d and
−1/2as�p−p′ ��t� is negative, we have that

V�p−p′ ��t� ≤ exp
[�m+ 4σ2d�t +A�p− p′�t0

]
V�p−p′ ��0�

By Theorem 3.4.6 in Karatzas and Shreve (1991, p. 174, eq. 4.17), we know that there
is a Wiener process W �t� such that almost surely A�p − p′�t0 = W 
a0p−p′ �t��, so we
have almost surely that

Vp�t� ≤ V�p−p′ ��t� ≤ exp
[
�m+ 4σ2d�t +W �a0p−p′ �t��

]
V�p−p′ ��0�

Let σ be sufficiently small for m+ 4σ2d < 0. The assumption that xiα�0� > 0� for
all i, implies that V�p−p′ ��0� <∞. Now we have to distinguish two cases. Suppose first
that limt→∞ a

0
p−p′ �t� = ∞. Then we have that limt→∞W 
a0p−p′ �t��/a0p−p′ �t� → 0 al-

most surely, by the strong law of large numbers (Karatzas and Shreve, 1991, problem
2.9.3, on p. 104, solved on p. 124). Thus we can write W 
a0p−p′ �t�� = a0p−p′ �t�w�t�,
where limt→∞w�t� = 0 (a.s.). Thus

Vp�t� ≤ exp

{[
m+ 4σ2d + a0p−p′ �t�

t
w�t�

]
t

}
V�p−p′ ��0� �a!s!�

but since a0p−p′ �t�/t is a bounded function, limt→∞w�t� = 0 and m+ 4σ2d < 0,

lim
t→∞

[
m+ 4σ2d + a0p−p′ �t�

t
w�t�

]
t = −∞

and we have then that limt→∞ Vp�t� = 0 almost surely.
When limt→∞ a

0
p−p′ �t� < ∞, we have that W 
a0p−p′ �t�� converges to a normal

random variable with mean zero and variance limt→∞ a
0
p−p′ �∞�; thus we have that

W 
a0p−p′ �∞�� <∞ almost surely.
Since limt→∞�m+ 4σ2d�t = −∞,

lim
t→∞

exp
{
�m+ 4σ2d�t +W 
a0p−p′ �t��

}
V�p−p′ ��0� = 0

almost surely. Since this exhausts all cases, the result follows for H�1�
i .
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Now let r > 1 and assume that for all p �∈ H�r−1�
i , limt→∞ Vp�t� = 0 almost surely.

Let p �∈ H�r�
i and p ∈ H�r−1�

i ! Then there is a p′ ∈ H�r�
i such that

ui�p� x� − ui�p′� x� < 0 for all x ∈ H�r−1�
−i(A.7)

so that p′ strictly dominates p relative to H�r−1�
−i ! For all x ∈ S−i�

u�p� x� = ∑
h∈P−i

u�p�h��j �=ixjhj

where hj is the pure strategy of agent j in the pure strategy profile h.

Let the set C�r�
j =

{
x ∈ Pj⋂H�r−1�

j

}
. C�r�

j is the set of pure strategies for player j

that are in H�r−1�
j , and therefore, if α �∈ C�r�

j , xjα�t� converges to 0 as time tends to
infinity almost surely by the induction assumption. Let C�r�

−i = �j �=iC�r�
j and �C�r�

−i �c =
�h ∈ P−i�h �∈ C�r�

−i �. C�r�
−i is the set of pure-strategy profiles (for agents other than i)

such that all strategies in the profile have survived r rounds of deletions of strictly
dominated strategies. �C�r�

−i �c is the set of pure-strategy profiles (for agents other
than i) such that at least one strategy in the profile has not survived r rounds of
deletions of strictly dominated strategies. The payoff function for player i facing a
mixed-strategy profile x can be divided into the payoff against pure profiles in C�r�

−i
and pure profiles in �C�r�

−i �c . The set C�r�
−i is never empty (it is impossible for all pure

strategies to be strictly dominated), but �C�r�
−i �c may be empty. In this case, the sum

over pure strategies in �C�r�
−i �c is zero.

u�p� x� = ∑
h∈C�r�

−i

u�p�h��j �=ixjhj +
∑

h∈
(
C
�r�
−i
)c u�p�h��j �=ix

j
hj

Thus, for all x ∈ S−i,

u�p� x� − u�p′� x� = ∑
h∈C�r�

−i


u�p�h� − u�p′� h���j �=ixjhj

+ ∑
h∈
(
C
�r�
−i
)c 
u�p�h� − u�p

′� h���j �=ixjhj

which by Equation (A.7) gives

u�p� x� − u�p′� x� < ∑
h∈
(
C
�r�
−i
)c 
u�p�h� − u�p

′� h���j �=ixjhj(A.8)

If we denote Mpp′ = �maxx∈S−i 
u�p� x� − u�p′� x��� + 1 and xc =
∑
h∈
(
C
�r�
−i
)c �j �=ixjhj ,

Equation (A.8) implies

u�p� x� − u�p′� x� −Mpp′xc < 0 for all x ∈ S−i(A.9)
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By definition of C�r�
−i , for all h ∈

(
C

�r�
−i
)c

there is at least one agent k �= i such that

hk �∈ H�r�
k and thus by the induction assumption limt→∞x

k
hk
�t� = 0� almost surely.

Therefore, xc�t� goes to zero almost surely. Note also that xc = 0 if �C�r�
−i �c is empty

and xc ≤ 1.
Let g�x� =∑α�pα − p′

α�mα�x� 0� −Mpp′xc and m = maxx g�x�. Notice that m < 0
by Equation (A.9).

Since V ′
p�t� ≤ 1, Vp�t� ≤ Vp−p′ �t�. By Lemma 1(b),

V�p−p′ ��t� = exp

(∫ t
0

{
g
x�s�� + σ�p−p′ ��s� + 2Mpp′xc�s�

}
ds

−1
2
as�p−p′ ��t� +A
�p− p′��t0

)
V�p−p′ ��0�

By the definition of m, and given that σ�p−p′ ��s� is bounded by 4σ2d and
−1/2as�p−p′ ��t� is negative, we have that

V�p−p′ ��t� ≤ exp
[
�m+ 4σ2d�t + 2

∫ t
o
Mpp′xc�s�ds +A�p− p′�t0

]
V�p−p′ ��0�

By Theorem 3.4.6 in Karatzas and Shreve (1991, p. 174, eq. 4.17), we know that
there is a Wiener process W �t� such that almost surely A�p−p′�t0 = W 
a0p−p′ �t��, so
we have almost surely that

Vp�t� ≤ V�p−p′ ��t� ≤ exp
{
�m+ 4σ2d�t + 2

∫ t
0
Mpp′xc�s�ds +W 
a0p−p′ �t��

}
V�p−p′ ��0�

Let ε and σ be sufficiently small for m + 4σ2d + ε < 0. Since xc�t� converges
to zero as time goes to infinity, for all sample paths ω, there is a time b�ω� <
∞ such that 2Mpp′xc�t� < ε for t > b�ω�. Therefore, since xc ≤ 1, we have that
2
∫ t
0 Mpp′xc�s�ds < εt + 2Mpp′b�ω�. The assumption that xiα�0� > 0� for all i, im-

plies that V�p−p′ ��0� < ∞. Now we have to distinguish two cases. Suppose first that
limt→∞ a

0
p−p′ �t� = ∞! Then we have that limt→∞W 
a0p−p′ �t��/a0p−p′ �t� → 0 almost

surely, by the strong law of large numbers (Karatzas and Shreve, 1991, Theorem
2.9.3, on p. 104, solved on p. 124). Thus we can write W 
a0p−p′ �t�� = a0p−p′ �t�w�t�,
where limt→∞w�t� = 0 (a.s.). Thus

Vp�t� < exp
{
�m+ 4σ2d + ε�t + 2Mpp′b�ω� +W 
a0p−p′ �t��

}
V�p−p′ ��0�

= exp 2Mpp′b�ω� exp

{[
m+ 4σ2d + ε+ a0p−p′ �t�

t
w�t�

]
t

}
V�p−p′ ��0�

but since a0p−p′ �t�/t is a bounded function limt→∞w�t� = 0 and m+ 4σ2d + ε < 0,

lim
t→∞

[
m+ 4σ2d + ε+ a0p−p′ �t�

t
w�t�

]
t = −∞(A.10)
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Since b�ω� < ∞ almost surely and V�p−p′ ��0� > 0, Equation (A.10) implies that
limt→∞ Vp�t� = 0 almost surely.

When limt→∞ a
0
p−p′ �t� < ∞, we have that W 
a0p−p′ �t�� converges to a normal

random variable with mean zero and variance limt→∞ a
0
p−p′ �∞�; thus we have that

W 
a0p−p′ �∞�� <∞ almost surely. We also know that b�ω� <∞ almost surely.
Since limt→∞�m+ 4σ2d + ε�t = −∞,

lim
t→∞

exp
{
�m+ 4σ2d + ε�t +Mpp′b�ω� +W 
a0p−p′ �t��

}
V�p−p′ ��0� = 0

almost surely. Since this exhausts all cases, the result follows by induction. �

For the proof of Proposition 1B, I will need a few more lemmas.
Lemma 2 proves a generalized version of the fact that

E

{
exp

[∫ t
b
xα�s�σαdWα�s�

]}
< exp

[
1
2
σ2
α�t − b�

]

To understand this, think of the simple case where we did not have xα�s� inside
the integral. Then we could rewrite the expectation as E �exp �σα
Wα�t� −Wα�b����.
Notice that σα
Wα�t� −Wα�b�� is a normal random variable with mean 0 and variance
σ2
α�t − b�, so its exponential is log normal. It is well known (see Greene, 1991, p. 60)

that in this case the log-normal distribution has mean equal to exp
[
1/2σ2

α�t − b�
]
.

Lemma 2 is used to take expectations wherever dWα�t� appears.

Lemma 2. Let some constant c > 0.

�a� E�exp cAt
βs� ≤ exp

[
dc2σ2�t − s�]

�b� E�exp cA�p�ts� ≤ exp
[
dc2σ2�t − s�]

Proof. (a) Let

Zts�x� = exp

(∑
l

∑
α

∫ t
s
2c
δβα − xα�u��σαldWl�u�

− 1
2

∫ t
s

∑
l

{∑
α

2c
δβα − xα�u��σαl
}2

du

)

By applying Itô’s rule to the exponential function (Karatzas and Shreve, 1991, exam-
ple 3.3.9, on p. 153), we have

Zts�x� = 1+∑
l

∑
α

∫ t
s
Zus �x�2c
δβα − xα�u��σαldWl�u�

By Novikov’s (1972) sufficient condition to Girsanov’s theorem (Karatzas and Shreve,
1991, Corollary 3.5.13, on p. 199), Zts�x� is a martingale if

E


exp


1

2

∫ t
s

∑
l

{∑
α

2c
δβα − xα�u��σαl
}2

du




 <∞ for s ≤ t <∞
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which in this case is true because 0 ≤ xα�t� ≤ 1. If Zts�x� is a martingale, E
Zts�x�� =
1. Note that

∑
α
δβα − xα�u��σαl = σβl −

∑
α xα�u�σαl ≤ σ . Using that and Hölder’s

inequality,

E�exp cAt
αs� ≤

{
E
Zts�x��

}1/2{
E

[
exp

(
1
2

∫ t
s

∑
l

{∑
α

2c
δβα − xα�u��σαl
}2

du

)]}1/2

≤ exp
[
dc2σ2�t − s�]

The same argument applies for (b). �

Lemma 3 shows that

lim
t→∞

E

{
1


xα�t��c
}
<
C

λc

where C is a constant that depends on the payoffs c and σ . The proof exploits the
fact that when there are mutations, xα cannot be an order of magnitude smaller than
λ for very long because the deterministic part of the flow is positive in that region.

Lemma 3. Let c > 0 and C�M� c� σ� = exp
c�M + 2dσ2��C1/2
1 exp
6c2dσ2�, where

C1 is a constant independent of both the time index and the particular stochastic process
we consider.

E
xβ�t�−c� ≤ C�M� c� σ�λ−c

Proof.

xβ�t� = exp

(∫ t
0

{
mβ
x�s�� λ� + σβ�s�

}
ds − 1

2
a0β�t� +At

β0

)
xβ�0�

+
∫ t
0
exp

(∫ t
s

{
mβ
x�u�� λ� + σβ�u�

}
du− 1

2
asβ�t� +At

βs

)

×
[∑
β

λαβxβ�t�
]
ds

By the positivity of the exponential function, λ, and x,

E
xβ�t�−c� ≤ E

{[∫ t
t−1

exp

(∫ t
s

{
mβ
x�u�� λ� + σβ�u�

}
du

−1
2
asβ�t� +At

βs

)∑
β

λαβxα�s�ds
]−c}

Since �mβ
x�u�� λ�� ≤M , �σβ�u�� ≤ σ2d and �asβ�t�� ≤ σ2d,

E
xβ�t�−c� ≤ exp
c�M + 2σ2d���λ�−c

E

[(∫ t
t−1

exp

{∑
l

∑
α

∫ t
s

δβα − xα�u��σαldWl�u�

}
ds

)−c]
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Letting k = exp
c�M + 2σ2d��λ−c we have then by Hölder’s inequality

E
xβ�t�−c� ≤ k
{
E

[(
exp

{∑
l

∑
α

∫ t
t−1


δβα − xα�u��σαldWl�u�
})−2c]}1/2

×
{
E

[(∫ t
t−1

exp

{
−∑

l

∑
α

∫ s
t−1


δβα − xα�u��σαldWl�u�
}
ds

)−2c]}1/2

≤ k

[
E

(
exp

{∑
l

∑
α

∫ t
t−1


δβα − xα�u���−2c�σαldWl�u�
})]1/2

×
[
E

(
sup

t−1≤s≤t
exp

{∑
l

∑
α

∫ s
t−1

2c
δβα − xα�u��σαldWl�u�
})]1/2

which by Lemma 2 and Hölder’s inequality gives

≤k
[
exp

(
4c2dσ2

)]1/2(
E

{[
sup

t−1≤s≤t
Zst−1�x�

]2})1/4

×
(
E

{[
sup

t−1≤s≤t
exp

(∑
l

∫ s
t−1

{∑
α

2c
δβα − xα�u��σαl
}2

ds

)]2})1/2

By the proof of Lemma 2, we know that Zst−1�x� is a martingale, so we can use
Novikov’s (1971) martingale moment inequalities (Karatzas and Shreve, 1991, Propo-
sition 3.3.26, on p. 163) to bound the expectation of the square of its supremum:

E
xβ�t�−c� ≤ k
[
exp

(
4c2dσ2

)]1/2
C

1/2
1 exp�4c2dσ2�

Since C1 is a constant independent of both the time index and the particular martin-
gale, the result follows. �

Lemma 4 is an auxiliary lemma that allows me to prove Lemma 5.

Lemma 4. Let

C1�M� 2� σ� = C�M� 2� σ�
1
2 exp�M + 2σ2� exp�2d2σ2�

and

C2�M� 2� σ� = exp
M + 2σ2�C�M� 2� σ�

For any pure strategy β,

E

[
x
j
β�t�
Vp�t�

]
≤ C1�M� 2� σ�

E
xjβ�t − 1��
λ

+ C2�M� 2� σ�
λ

λ
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Proof. By Lemma 1 and the definition of σ and M , we have,

x
j
β�t�
Vp�t�

≤ 1
Vp�t�

{
exp�M + 2σ2 +At

βt−1�xjβ�t − 1�(A.11)

+
∫ t
t−1

exp
�M + 2σ2��t − s� +At
βs�

nj∑
γ=1

λ
j
βγx

j
γ�s�ds

}

By Lemma 1, the positivity of the exponential function, λ, and x, and using Hölder’s
inequality, we have that

Et−1

{
1


Vp�t��2
}

≤ ∏
α

(
Et−1

{[∫ t
t−1

exp

(∫ t
s
�mα
x�u�� λ� + σα�u��du

−1
2
asα�t� +At

αs

)
nj∑
γ=1

λαγxγ�s�ds
]−2})pα

We can then show by Lemma 3 that

Et−1

{
1


Vp�t��2
}
≤∏

α

[
C�M� 2� σ� 1

λ2

]pα
(A.12)

As in the proof of Lemma 3, we can show that

Et−1

{[∫ t
t−1

exp�At
βs�

nj∑
γ=1

λ
j
βγx

j
γ�s�ds

]2}

≤ exp
2�M + 2σ2d��λ2
E

[(∫ t
t−1

exp

{∑
l

nj∑
γ=1

∫ t
s

δβγ − xjγ�u��σjγldWl�u�

}
ds

)2]

which implies as in Lemma 3,

Et−1



[∫ t

t−1
exp�At

βs�
nj∑
γ=1

λ
j
βγx

j
γ�s�ds

]2

 ≤ C�M� 2� σ�λ2

(A.13)

By Equation (A.11), we have that

Et−1

[
x
j
β�t�
Vp�t�

]
≤
{
Et−1

[
1

V 2
p �t�

]} 1
2

×
[
exp�M + 2σ2��E
exp�2At

βt−1���
1
2 x

j
β�t − 1�

+ exp�M + 2σ2�
(
E

{[∫ t
t−1

exp�At
βs�

nj∑
γ=1

λ
j
βγx

j
γ�s�ds

]2}) 1
2
]
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and by Lemma 2 and Equations (A.12) and (A.13),

Et−1

[
x
j
β�t�
Vp�t�

]
≤ C�M� 2� σ� 1

2
1
λ

[
exp�M + 2σ2� exp�2d2σ2�xjβ�t − 1�

+exp�M + 2σ2�C�M� 2� σ� 1
2 λ
]

From this we get

E

[
x
j
β�t�
Vp�t�

]
≤ C1�M� 2� σ�

E
xjβ�t − 1��
λ

+ C2�M� 2� σ�
λ

λ
�

Proof of Proposition 1B. I will do the proof by induction. Let the sets C�r�
j ,

C
�r�
−i , and

(
C

�r�
−i
)c

and the constants Mpp′ and xc be defined as in the proof of Propo-
sition 1A. Let r > 1, and assume that there is a constant K�r−1� such that for all
β �∈ C�r−1�

i ,

lim
λ→0

lim sup
t→∞

{
E
xiβ�t��

}
< K�r−1�λ(A.14)

for maxα�i�l�σiαl� small enough. Let γ �∈ C�r�
i and γ ∈ C�r−1�

i ! Then there is a p′ ∈ H�r�
i

such that

ui�γ� x� − ui�p′� x� < 0 for all x ∈ H�r−1�
−i(A.15)

Equation (A.14) and the fact that xc�t� ≤
∑
j �=i
∑
β �∈Cr−1

j
x
j
β imply that

lim
λ→0

lim sup
t→∞

E
xc�t�� ≤
∑
j �=i
njK�r−1�λ

Equation (A.15) and the definition of xc imply that

u�γ� x� − u�p′� x� −Mγp′xc < 0 for all x ∈ S−i(A.16)

Assume that λ is small enough that

max
x∈S−i

{
u�γ� x� − u�p′� x� −Mγp′xc

}
<
∑
β

�λγβ −
∑
α

p′
αλαβ�(A.17)

Since

mγ�x� λ� −
∑
α

p′
αmα�x� λ� = u�γ� x� − u�p′� x� −∑

β

�λγβ −
∑
α

p′
αλαβ�

Equations (A.16) and (A.17) imply that

mγ�x� λ� −
∑
α

p′
αmα�x� λ� −Mγp′xc < 0 for all x ∈ S−i(A.18)
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Let g�x� = mγ�x� λ� −
∑
α p

′
αmα�x� λ� −Mγp′xc , and let m = maxx�g�x��. Notice

that m < 0 by Equation (A.18).

Before proceeding with the proof of Proposition 1B, I will show in Lemma 5 that
the expectation of xγ/Vp′ is bounded. Samuelson and Zhang (1992) show that strictly
dominated strategies disappear by showing that for γ dominated by p′, xγ/Vp′ goes
to zero when there are no shocks. I cannot do this because mutations prevent the
weights of strategies from becoming arbitrarily small. But Lemma 5 shows that for
any γ and p, E�xγ/Vp′ � has a bound that is independent of the mutation rates if these
are not orders of magnitude apart. This will be used to show that for γ dominated,
E�xγ� is asymptotically small when the mutation rates are small. E�xγ/Vp′ � has a
bound because far from the boundaries the dynamics tend to make it small, so the
first term in Equation (A.19) is small, but near the boundaries the movement depends
on mutation rates to a greater extent, and the second term in Equation (A.19) reflects
this.

Lemma 5. For all t large enough,

E

[
xγ�t�
Vp′ �t�

]
≤exp
�m+ 5σ2d�t� xγ�0�

Vp′ �0�
+ [−�m+ 5σ2d�]−1

(A.19)

×
{
Mγp′

[
C1�M� 2� σ�

∑
j �=i
nj
K�r−1�λ

λ
+ C2�M� 2� σ�

λ

λ

]

+λ
λ
C�m� 2� σ�

}

Proof. By Lemma 1(b’), we know that

xγ�t�
Vp′ �t�

=exp

(∫ t
0

{
�g
x�s�� + σ�γ−p′ ��s�

}
ds − 1

2
a0�γ−p′ ��t� +A
�γ − p′��t0

)
xγ�0�
Vp′ �0�

+
∫ t
0
exp
(∫ t
s

{
g
x�u�� + σ�γ−p′ ��u�

}
du− 1

2
as�γ−p′ ��t� +A
�γ − p′��ts

)

×Mγp′xc�s�
xγ�s�
Vp′ �s�

ds

+
∫ t
0
exp

(∫ t
s

{
g
x�u�� + σ�γ−p′ ��u�

}
du − 1

2
as�γ−p′ ��t� +A
�γ − p′��ts

)

×
{

1
xγ�s�

[∑
β

λγβxβ�s�
]
−∑

α

p′
α

xα�s�

[∑
β

λαβxβ�s�
]}
xγ�s�
Vp′ �s�

ds
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By the definition of m, and since σ�γ−p′ ��t� ≤ 4dσ2, −1/2a0�γ−p′ ��t� is negative, and
xγ ≤ 1,

xγ�t�
Vp′ �t�

≤exp
{
�m+ 4σ2d�t +A 
�γ − p′��t0

} xγ�0�
Vp′ �0�

+
∫ t
0
exp
{
�m+ 4σ2d��t − s� +A 
�γ − p′��ts

}

×
[
Mγp′

xc�s�
Vp′ �s�

+ λ

xγ�s�
xγ�s�
Vp′ �s�

]
ds

Taking expectations and using the fact that xc ≤
∑
j �=i
∑
β �∈C�r−1�

j
x
j
β,

E

[
xγ�t�
Vp′ �t�

]
≤exp
�m+ 4σ2d�t�
E�exp�A
�γ − p′��t0���

xγ�0�
Vp′ �0�

+
∫ t
0
exp
�m+ 4σ2d��t − s��

×E
(
Es�exp
A�γ − p′�ts��

[
Mγp′

∑
j �=i

∑
β �∈C�r−1�

j

x
j
β�s�
Vp′ �s�

+ λ

V ′
p�s�

])
ds

which by Lemma 2 gives

E

[
xγ�t�
Vp′ �t�

]
≤exp
�m+ 4σ2d�t� exp�dσ2t� xγ�0�

Vp′ �0�

+
∫ t
0
exp
�m+ 4σ2d��t − s�� exp
dσ2�t − s��

×


Mγp′

∑
j �=i

∑
β �∈C�r−1�

j

E

[
x
j
β�s�
Vp′ �s�

]
+ E

[
λ

V ′
p�s�

]
 ds

and by Lemmas 3 and 4 gives

E

[
xγ�t�
Vp′ �t�

]
≤exp
�m+ 4σ2d�t� exp (dσ2t

) xγ�0�
Vp′ �0�

+
∫ t
0
exp

[�m+ 4σ2d��t − s� + dσ2�t − s�]

×
(
Mγp′

{
C1�M� 2� σ�

∑
j �=i

∑
β �∈C�r−1�

j

E
xjβ�t − 1��
λ

+ C2�M� 2� σ�
λ

λ

}

+ λ

λ
C�m� 2� σ�

)
ds
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Notice that by the induction assumption for t large enough, E
xjβ�t − 1�� ≤ K�r−1�λ,
and the lemma then follows by integration. �

Now I continue with the proof of Proposition 1B.
Let b < t. By Lemma 1(b),

Vp′ �t� =exp

(∫ t
b

{
�∑
α

p′
αmα
x�s�� λ� + σp′ �s�

}
ds − 1

2
abp′ �t� +A�p′�tb

)
Vp′ �b�

+
∫ t
b
exp

(∫ t
s

{
�∑
α

p′
αmα
x�u�� λ� + σp′ �u�

}
du − 1

2
asp′ �t� +A�p′�ts

)

×∑
α

p′
α

xα�s�

[∑
β

λαβxβ�s�
]
Vp′ �s�ds

Then, by the positivity of λ�p′, and x and the exponential function,

1 ≥ Vp′ �t� ≥ exp

(∫ t
b

{∑
α

p′
αmα
x�s�� λ� + σp′ �s�

}
ds − 1

2
abp′ �t� +A�p′�tb

)
Vp′ �b�

By Lemma 1(b’), letting gγ�x� = mγ�x� λ� −Mγp′xc ,

xγ�t� = exp
(∫ t

b

{
gγ
x�s�� + σγ�s�

}
ds − 1

2
abγ�t� +At

γb

)
xγ�b�

+
∫ t
b
exp

(∫ t
s

{
gγ
x�u�� + σγ�u�

}
du− 1

2
asγ�t� +At

γs

)[∑
β

λγβxβ�s�
]
ds

+
∫ t
b
exp

(∫ t
s

{
gγ
x�u�� + σγ�u�

}
du− 1

2
asγ�t� +At

γs

)
Mγp′xc�s�xγ�s�ds

Now I divide the first line in the preceding equation by

exp

(∫ t
b

{∑
α

p′
αmα
x�s�� λ� + σp′ �s�

}
ds − 1

2
abp′ �t� +A�p′�tb

)
Vp′ �b�

and since I showed that the last expression is less than one, letting g�γ−p′ ��x� =
mγ
x�s�� λ� −

∑
α p

′
αmα
x�s�� λ� −Mpp′xc�s� gives

xγ�t� ≤exp
(∫ t

b

{
gγ−p′ 
x�s�� + σ�γ−p′ ��s�

}
ds − 1

2
ab�γ−p′ ��t� +A
�γ − p′��tb

)
xγ�b�
Vp′ �b�

+
∫ t
b
exp

(∫ t
s

{
gγ
x�u�� + σγ�u�

}
du− 1

2
asγ�t� +At

γs

)[∑
β

λγβxβ�s�
]
ds

+
∫ t
b
exp

(∫ t
s

{
gγ
x�u�� + σγ�u�

}
du− 1

2
asγ�t� +At

γs

)
Mγp′xc�s�ds
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Taking expectations and applying Lemmas 2 and 3, by definition of M ,

E
xγ�t�� ≤exp
�m+ 2σ2d��t − b��E
[
xγ�b�
Vp′ �b�

]
(A.20)

+
(
M + 2σ2d

)−1{
−1+ exp

[
�M + 2σ2d��t − b�

]}
λ

+Mγp′ max
s∈�b�t�

�E
xc�s���
(
M + 2σ2d

)−1

×
{
−1+ exp

[
�M + 2σ2d��t − b�

]}

I have to show that there is some constant K�r� such that for all t larger than some
tr , E
xγ�t�� is smaller than K�r�λ.

If λ/λ is bounded, Lemma 5 shows that E
[
xγ�b�/Vp′ �b�

]
is bounded by a constant

F that depends only on m�M , σ , and xγ�0�/Vp′ �0� when b is above some br . Choose
t ′ such that t ′ − br > 0 and

exp
2�m+ 4σ2d��t ′ − br��F < λ

Then for all t > t ′, choose b such that t − b = t ′ − br . This guarantees that the
first line in Equation (A.20) is strictly smaller than λ. Since t − b is a constant by
definition of b, the second line of Equation (A.20) is also a constant times λ. Since
xc ≤

∑
j �=i
∑
β �∈C�r−1�

i
x
j
β and by the induction assumption xjβ is smaller than K�r−1�λ,

the third line in Equation (A.20) also can be made smaller than a constant times λ
for t larger than some t ′′. Let t ′ be larger than t ′′, and the result follows for r > 1 by
making

K�r� =1+
(
M + 2σ2d

)−1{
−1+ exp

[
�M + 2σ2d��t ′ − br�

]}

+Mpp′ �
∑
j �=i
njK

�r−1��
(
M + 2σ2d

)−1{
−1+ exp

[
�M + 2σ2d��t ′ − br�

]}

The proof for r = 1 is analogous. Just notice that
(
C

�0�
j

)c
= � and xc = 0, and the

steps of the proof are identical. The result follows by induction. �

Proof of Proposition 2. This proof borrows heavily from the proof of Propo-
sitions 3 and 4 in Fudenberg and Harris (1992), so readers familiar with their work
can follow my proofs more easily.

(a) Let δ�x� = x�1− x��σ2
1 − σ2x+ axN−1 − b� − λ1x+ λ2�1− x�. Let an arbitrary

z ∈ �0� 1�, and

I1 =
∫ x�0�
0

exp
[
−2
∫ x
z

δ�y�
y2�1− y�2σ2 dy

]
dx
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I2 =
∫ 1

x�0�
exp

[
−2
∫ x
z

δ�y�
y2�1− y�2σ2 dy

]
dx

D�x� = 2
x2�1− x�2σ2 exp 2

∫ x
z

δ�y�
y2�1− y�2σ2 dy

The process x�t� is ergodic (see Theorem 1.17 of Skorohod, 1989, p. 48) if I1 and I2
are infinite and

∫ 1
0 D�x�dx is finite.

But δ�y�/
y2�1− y�2σ2� is of order λ2/y
2 around y = 0 and of order −λ1/�1− y�2

around y = 1. Thus I1 and I2 are infinite. D�x� is of order exp�−λ1/x�/x2 in a
neighborhood of x = 0 and of order exp
−λ2/�1 − x��/�1 − x�2 in the vicinity of
x = 1 , so

∫ 1
0 D�x�dx is finite.

(b) By Theorem 1.17 of Skorohod (1989, p. 48), the density of the ergodic distri-
bution is proportional to

D�x� = 2
x2�1− x�2σ2 exp 2

∫ x
z

δ�y�
y2�1− y�2σ2 dy

But since

1
x2�1− x�2 = exp 2
− ln x− ln�1− x�� = exp 2

(∫ x
z

1
1− y − 1

y
dy

)
1

z2�1− z�2

We have then that

D�x� = 2
z2�1− z�2σ2 exp 2

∫ x
z

δ�y� + �2y − 1�y�1− y�σ2

y2�1− y�2σ2 dy

Let

γ�y� = δ�y� + �2y − 1�y�1− y�σ2 = y�1− y�

×�σ2y − σ2
2 + ayN−1 − b� − λ1y + λ2�1− y�

and F�x� = exp 2
∫ x
z

γ�y�
y2�1− y�2σ2 dy

Let y1 be the smallest y ∈ 
0� 1� such that γ�y� = 0. Since

γ�y� > −by − λ1y + λ2�1− y� − σ2y

then

y1 >
λ2

b+ λ1 + λ2 + σ2

Since γ�y� > 0 for y < y1, F�y� < F�y1�.
Choose σ2 so that a− 2b− σ2

2 > 0. Choose y2 so that ayN−1
2 − b− σ2

2 > b+ k for
some a− 2b− σ2

2 > k > 0. Let y3 = 1− λ1/�b+ k�. Since γ�y� > 0 in 
y2� y3�, then
F�y� is strictly increasing in that interval.



STOCHASTIC REPLICATOR DYNAMICS 479

Now let x ∈ 
y1� y2� and x′ ∈ �y2� y3�:

F�x′�
F�x� = exp 2

[∫ x′
y2

γ�y�
y2�1− y�2σ2 dy +

∫ y2
x

γ�y�
y2�1− y�2σ2 dy

]

≥ exp
2
σ2

{∫ x′
y2

[
b+ k
y�1− y� − λ1

y�1− y�2
]
dy −

∫ y2
x

[
b+ σ2

2

y�1− y� + λ1

y�1− y�2
]
dy

}

≥ exp
2
σ2

{
−�b+ k�
ln�1− x′� − ln�1− y2�� + �b+ σ2

2 + λ1� ln x

+ �b+ σ2
2 � ln�1− y2� + λ1 ln�1− x′� − λ1

�1− x′�

}

If x′ ≥ 1− λ�b+k/4�/�b+k�
1 , then given the definition of x′ and y1,

F�x′�
F�x� ≥ exp

2
σ2

[
−�b+ k/4� ln λ1 + �b+ λ1 + σ2

2 � ln
λ2

b+ λ1 + λ2 + σ2
2

+�2b+ k+ σ2
2 � ln�1− y2� + λ1 ln�1− x′� − λ1

�1− x′�

]

Since λ1/λ2 is bounded, if x′ ≥ 1 − λ�b+k/4�/�b+k�
1 and λ1 and σ2 are small enough,

F�x′� ≥ F�x�. Given that for y < y1, F�y� < F�y1�, and F�y� is increasing in the
interval 
y2� y3�, this implies that F�x′� ≥ F�y� for all y < x′.

Let x1 = 1− λ�b+k/3�/b+k
1 , x2 = 1− λ�b+k/4�/�b+k�

1 , and x3 = 1− λ�b+k/2�/�b+k�
1 . Now let

the ratio of probabilities under the ergodic distribution

P�x > x1�
P�x < x2�

≥�x3 − x1� minx∈
x1�x3� D�x�
maxx∈
0�x2�D�x� ≥ �x3 − x1�F�x1�

F�x2�

≥ �x3 − x1� exp
2
σ2

{
−�b+ k�
ln�1− x1� − ln�1− x2��

+ λ1 ln x2 + λ1 ln�1− x1� −
λ1

�1− x1�

}

Since the preceding expression tends to infinity as λ1� λ2� σ
2
1 , and σ2

2 tend to zero,
all the probability mass tends to be concentrated in the interval 
1− λ�b+k/3�/�b+k�

1 � 1�.
Since λ1 goes to zero, the result follows. �
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